Abstract
Original language | English |
---|---|
Pages (from-to) | 3957-3985 |
Number of pages | 29 |
Journal | Aging |
Volume | 10 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Metabolomics
- Mitochondria
- NDUFA4L2
- Renal cell carcinoma
- Transcriptome
Fingerprint
Dive into the research topics of 'Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. / Lucarelli, G.; Rutigliano, M.; Sallustio, F. et al.
In: Aging, Vol. 10, No. 12, 2018, p. 3957-3985.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma
AU - Lucarelli, G.
AU - Rutigliano, M.
AU - Sallustio, F.
AU - Ribatti, D.
AU - Giglio, A.
AU - Signorile, M.L.
AU - Grossi, V.
AU - Sanese, P.
AU - Napoli, A.
AU - Maiorano, E.
AU - Bianchi, C.
AU - Perego, R.A.
AU - Ferro, M.
AU - Ranieri, E.
AU - Serino, G.
AU - Bell, L.N.
AU - Ditonno, P.
AU - Simone, C.
AU - Battaglia, M.
N1 - Export Date: 6 February 2019 Correspondence Address: Lucarelli, G.; Department of Emergency and Organ Transplantation- Urology, Andrology and Kidney Transplantation Unit, University of BariItaly; email: giuseppe.lucarelli@inwind.it References: Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2018 (2018) CA Cancer J Clin, 68, pp. 7-30. , https://doi.org/10.3322/caac.21442; Weiss, R.H., Metabolomics and Metabolic Reprogramming in Kidney Cancer (2018) Semin Nephrol, 38, pp. 175-182. , https://doi.org/10.1016/j.semnephrol.2018.01.006; Lucarelli, G., Fanelli, M., Larocca, A.M., Germinario, C.A., Rutigliano, M., Vavallo, A., Selvaggi, F.P., Ditonno, P., Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/ml (2012) Prostate, 72, pp. 1611-1621. , https://doi.org/10.1002/pros.22514; Lucarelli, G., Ditonno, P., Bettocchi, C., Spilotros, M., Rutigliano, M., Vavallo, A., Galleggiante, V., Battaglia, M., Serum sarcosine is a risk factor for progression and survival in patients with metastatic castration-resistant prostate cancer (2013) Future Oncol, 9, pp. 899-907. , https://doi.org/10.2217/fon.13.50; Gagné, M.L., Boulay, K., Topisirovic, I., Huot, Mé., Mallette, F.A., Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling (2017) Trends Cell Biol, 27, pp. 738-752. , https://doi.org/10.1016/j.tcb.2017.06.002; Comprehensive molecular characterization of clear cell renal cell carcinoma (2013) Nature, 499, pp. 43-49. , https://doi.org/10.1038/nature12222; Ricketts, C.J., De Cubas, A.A., Fan, H., Smith, C.C., Lang, M., Reznik, E., Bowlby, R., Gibbs, R.A., The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma (2018) Cell Reports, 23, p. 3698. , https://doi.org/10.1016/j.celrep.2018.06.032; Hakimi, A.A., Reznik, E., Lee, C.H., Creighton, C.J., Brannon, A.R., Luna, A., Aksoy, B.A., Russo, P., An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma (2016) Cancer Cell, 29, pp. 104-116. , https://doi.org/10.1016/j.ccell.2015.12.004; Battaglia, M., Lucarelli, G., The role of renal surgery in the era of targeted therapy: the urologist's perspective (2015) Urologia, 82, pp. 137-138. , https://doi.org/10.5301/uro.5000105; Lucarelli, G., Galleggiante, V., Rutigliano, M., Sanguedolce, F., Cagiano, S., Bufo, P., Lastilla, G., Bettocchi, C., Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cellrenal cell carcinoma (2015) Oncotarget, 6, pp. 13371-13386. , https://doi.org/10.18632/oncotarget.3823; Lucarelli, G., Rutigliano, M., Sanguedolce, F., Galleggiante, V., Giglio, A., Cagiano, S., Bufo, P., Ferro, M., Increased Expression of the Autocrine Motility Factor is Associated With Poor Prognosis in Patients With Clear Cell-Renal Cell Carcinoma (2015) Medicine (Baltimore), 94. , https://doi.org/10.1097/MD.0000000000002117; Bianchi, C., Meregalli, C., Bombelli, S., Di Stefano, V., Salerno, F., Torsello, B., De Marco, S., Lucarelli, G., The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation (2017) Oncotarget, 8. , https://doi.org/10.18632/oncotarget.23056; Xia, J., Wishart, D.S., Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis (2016) Curr Protoc Bioinformatics, 55, pp. 1-91. , https://doi.org/10.1002/cpbi.11; Barupal, D.K., Fiehn, O., Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets (2017) Sci Rep, 7, p. 14567. , https://doi.org/10.1038/s41598-017-15231-w; Lucarelli, G., Ferro, M., Battaglia, M., Multi-omics approach reveals the secrets of metabolism of clear cell-renal cell carcinoma (2016) Transl Androl Urol, 5, pp. 801-803. , https://doi.org/10.21037/tau.2016.06.12; Shim, E.H., Livi, C.B., Rakheja, D., Tan, J., Benson, D., Parekh, V., Kho, E.Y., Rea, S.L., L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer (2014) Cancer Discov, 4, pp. 1290-1298. , https://doi.org/10.1158/2159-8290.CD-13-0696; Lucarelli, G., Rutigliano, M., Ferro, M., Giglio, A., Intini, A., Triggiano, F., Palazzo, S., Sanguedolce, F., Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma (2017) Urol Oncol, 35, p. 461. , https://doi.org/10.1016/j.urolonc.2017.02.011; Chau, L.Y., Heme oxygenase-1: emerging target of cancer therapy (2015) J Biomed Sci, 22, p. 22. , https://doi.org/10.1186/s12929-015-0128-0; Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Mesirov, J.P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles (2005) Proc Natl Acad Sci USA, 102, pp. 15545-15550. , https://doi.org/10.1073/pnas.0506580102; Tello, D., Balsa, E., Acosta-Iborra, B., Fuertes-Yebra, E., Elorza, A., Ordóñez, Á., Corral-Escariz, M., Aragonés, J., Induction of the mitochondrial NDUFA4L2 protein by HIF-1a decreases oxygen consumption by inhibiting Complex I activity (2011) Cell Metab, 14, pp. 768-779. , https://doi.org/10.1016/j.cmet.2011.10.008; Kitamura, N., Nakamura, Y., Miyamoto, Y., Miyamoto, T., Kabu, K., Yoshida, M., Futamura, M., Arakawa, H., Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0016060; Itakura, E., Kishi-Itakura, C., Koyama-Honda, I., Mizushima, N., Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy (2012) J Cell Sci, 125, pp. 1488-1499. , https://doi.org/10.1242/jcs.094110; Kim, S.G., Hoffman, G.R., Poulogiannis, G., Buel, G.R., Jang, Y.J., Lee, K.W., Kim, B.Y., Blenis, J., Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTTRUVBL1/2 complex (2013) Mol Cell, 49, pp. 172-185. , https://doi.org/10.1016/j.molcel.2012.10.003; Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Galon, J., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks (2009) Bioinformatics, 25, pp. 1091-1093. , https://doi.org/10.1093/bioinformatics/btp101; Dolman, N.J., Chambers, K.M., Mandavilli, B., Batchelor, R.H., Janes, M.S., Tools and techniques to measure mitophagy using fluorescence microscopy (2013) Autophagy, 9, pp. 1653-1662. , https://doi.org/10.4161/auto.24001; Di Lorenzo, G., De Placido, S., Pagliuca, M., Ferro, M., Lucarelli, G., Rossetti, S., Bosso, D., Aieta, M., The evolving role of monoclonal antibodies in the treatment of patients with advanced renal cell carcinoma: a systematic review (2016) Expert Opin Biol Ther, 16, pp. 1387-1401. , https://doi.org/10.1080/14712598.2016.1216964; Galleggiante, V., Rutigliano, M., Sallustio, F., Ribatti, D., Ditonno, P., Bettocchi, C., Selvaggi, F.P., Battaglia, M., CTR2 identifies a population of cancer cells with stem cell-like features in patients with clear cell renal cell carcinoma (2014) J Urol, 192, pp. 1831-1841. , https://doi.org/10.1016/j.juro.2014.06.070; Ribatti, D., Nico, B., Vacca, A., Presta, M., The gelatin sponge-chorioallantoic membrane assay (2006) Nat Protoc, 1, pp. 85-91. , https://doi.org/10.1038/nprot.2006.13
PY - 2018
Y1 - 2018
N2 - An altered metabolism is involved in the development of clear cell - renal cell carcinoma (ccRCC), and in this tumor many altered genes play a fundamental role in controlling cell metabolic activities. We delineated a large-scale metabolomic profile of human ccRCC, and integrated it with transcriptomic data to connect the variations in cancer metabolism with gene expression changes. Moreover, to better analyze the specific contribution of metabolic gene alterations potentially associated with tumorigenesis and tumor progression, we evaluated the transcription profile of primary renal tumor cells. Untargeted metabolomic analysis revealed a signature of an increased glucose uptake and utilization in ccRCC. In addition, metabolites related to pentose phosphate pathway were also altered in the tumor samples in association with changes in Krebs cycle intermediates and related metabolites. We identified NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) as the most highly expressed gene in renal cancer cells and evaluated its role in sustaining angiogenesis, chemoresistance, and mitochondrial dysfunction. Finally, we showed that silencing of NDUFA4L2 affects cell viability, increases mitochondrial mass, and induces ROS generation in hypoxia. © Lucarelli et al.
AB - An altered metabolism is involved in the development of clear cell - renal cell carcinoma (ccRCC), and in this tumor many altered genes play a fundamental role in controlling cell metabolic activities. We delineated a large-scale metabolomic profile of human ccRCC, and integrated it with transcriptomic data to connect the variations in cancer metabolism with gene expression changes. Moreover, to better analyze the specific contribution of metabolic gene alterations potentially associated with tumorigenesis and tumor progression, we evaluated the transcription profile of primary renal tumor cells. Untargeted metabolomic analysis revealed a signature of an increased glucose uptake and utilization in ccRCC. In addition, metabolites related to pentose phosphate pathway were also altered in the tumor samples in association with changes in Krebs cycle intermediates and related metabolites. We identified NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) as the most highly expressed gene in renal cancer cells and evaluated its role in sustaining angiogenesis, chemoresistance, and mitochondrial dysfunction. Finally, we showed that silencing of NDUFA4L2 affects cell viability, increases mitochondrial mass, and induces ROS generation in hypoxia. © Lucarelli et al.
KW - Metabolomics
KW - Mitochondria
KW - NDUFA4L2
KW - Renal cell carcinoma
KW - Transcriptome
U2 - 10.3322/caac.21442
DO - 10.3322/caac.21442
M3 - Article
VL - 10
SP - 3957
EP - 3985
JO - Aging
JF - Aging
SN - 0002-0966
IS - 12
ER -