TY - JOUR
T1 - Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease
AU - Benninger, D. H.
AU - Berman, B. D.
AU - Houdayer, E.
AU - Pal, N.
AU - Luckenbaugh, D. A.
AU - Schneider, L.
AU - Miranda, S.
AU - Hallett, M.
PY - 2011/2/15
Y1 - 2011/2/15
N2 - Objective: To investigate the safety and efficacy of intermittent theta-burst stimulation (iTBS) in the treatment of motor symptoms in Parkinson disease (PD). Background: Progression of PD is characterized by the emergence of motor deficits, which eventually respond less to dopaminergic therapy and pose a therapeutic challenge. Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. iTBS is a novel type of rTMS that may be more efficacious than conventional rTMS. Methods: In this randomized, double-blind, sham-controlled study, we investigated safety and efficacy of iTBS of the motor and dorsolateral prefrontal cortices in 8 sessions over 2 weeks (evidence Class I). Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neuropsychological, and neurophysiologic measures. Results: We investigated 26 patients with mild to moderate PD: 13 received iTBS and 13 sham stimulation. We found beneficial effects of iTBS on mood, but no improvement of gait, bradykinesia, UPDRS, and other measures. EEG/EMG monitoring recorded no pathologic increase of cortical excitability or epileptic activity. Few reported discomfort or pain and one experienced tinnitus during real stimulation. CONCLUSION:: iTBS of the motor and prefrontal cortices appears safe and improves mood, but failed to improve motor performance and functional status in PD. Classification of evidence: This study provides Class I evidence that iTBS was not effective for gait, upper extremity bradykinesia, or other motor symptoms in PD.
AB - Objective: To investigate the safety and efficacy of intermittent theta-burst stimulation (iTBS) in the treatment of motor symptoms in Parkinson disease (PD). Background: Progression of PD is characterized by the emergence of motor deficits, which eventually respond less to dopaminergic therapy and pose a therapeutic challenge. Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. iTBS is a novel type of rTMS that may be more efficacious than conventional rTMS. Methods: In this randomized, double-blind, sham-controlled study, we investigated safety and efficacy of iTBS of the motor and dorsolateral prefrontal cortices in 8 sessions over 2 weeks (evidence Class I). Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neuropsychological, and neurophysiologic measures. Results: We investigated 26 patients with mild to moderate PD: 13 received iTBS and 13 sham stimulation. We found beneficial effects of iTBS on mood, but no improvement of gait, bradykinesia, UPDRS, and other measures. EEG/EMG monitoring recorded no pathologic increase of cortical excitability or epileptic activity. Few reported discomfort or pain and one experienced tinnitus during real stimulation. CONCLUSION:: iTBS of the motor and prefrontal cortices appears safe and improves mood, but failed to improve motor performance and functional status in PD. Classification of evidence: This study provides Class I evidence that iTBS was not effective for gait, upper extremity bradykinesia, or other motor symptoms in PD.
UR - http://www.scopus.com/inward/record.url?scp=79951665510&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951665510&partnerID=8YFLogxK
U2 - 10.1212/WNL.0b013e31820ce6bb
DO - 10.1212/WNL.0b013e31820ce6bb
M3 - Article
C2 - 21321333
AN - SCOPUS:79951665510
VL - 76
SP - 601
EP - 609
JO - Neurology
JF - Neurology
SN - 0028-3878
IS - 7
ER -