Intraoperative forces and moments analysis on patient head clamp during awake brain surgery

Danilo De Lorenzo, Elena De Momi, Lorenzo Conti, Emiliano Votta, Marco Riva, Enrica Fava, Lorenzo Bello, Giancarlo Ferrigno

Research output: Contribution to journalArticlepeer-review


In brain surgery procedures, such as deep brain stimulation, drug-resistant epilepsy and tumour surgery, the patient is intentionally awakened to map functional neural bases via electrophysiological assessment. This assessment can involve patient's body movements; thus, increasing the mechanical load on the head-restraint systems used for keeping the skull still during the surgery. The loads exchanged between the head and the restraining device can potentially result into skin and bone damage. The aim of this work is to assess such loads for laying down the requirements of a surgical robotics system for dynamic head movements compensation by fast moving arms and by an active restraint able to damp such actions. A Mayfield® head clamp was tracked and instrumented with strain gages (SGs). SG locations were chosen according to finite element analyses. During an actual brain surgery, displacements and strains were measured and clustered according to events that generated them. Loads were inferred from strain data. The greatest force components were exerted vertically (median 5.5 N, maximum 151.87 N) with frequencies up to 1.5 Hz. Maximum measured displacement and velocity were 9 mm and 60 mm/s, with frequencies up to 2.8 Hz. The analysis of loads and displacements allowed to identify the surgery steps causing maximal loads on the head-restraint device.

Original languageEnglish
Pages (from-to)331-341
Number of pages11
JournalMedical and Biological Engineering and Computing
Issue number3
Publication statusPublished - Mar 2013


  • Awake brain surgery
  • Force sensors
  • Head clamp
  • Head rest
  • Intraoperative force/moments measurement
  • Motion compensation

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Science Applications
  • Medicine(all)


Dive into the research topics of 'Intraoperative forces and moments analysis on patient head clamp during awake brain surgery'. Together they form a unique fingerprint.

Cite this