Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity

P. Calabresi, U. Misgeld, H. U. Dodt

Research output: Contribution to journalArticle

88 Citations (Scopus)

Abstract

Electroresponsiveness of neostriatal neurons was studied by intracellular recording in a rat brain slice preparation maintained in standard solution or in solution containing K-channel blockers. In standard solution, the neurons fired repetitively at increasing frequencies with increasing amplitude of direct depolarization. The firing pattern was independent of the membrane potential from which firing was induced. In the presence of tetraethylammonium (20 mM), long-lasting (300-500 ms) plateau potentials could be elicited by the injection of short (5-10 ms) current pulses. Plateau potentials persisted in Na-free solution, in the presence of tetrodotoxin (1-3 μM) and if Ca in the perifusate was replaced by Ba. The plateau was blocked by Cd (500 μM). The plateaux were followed by depolarizing afterpotentials. When the plateau potential failed due to fatigue, a small slow depolarization of short duration (10-30 ms) was elicited in Na-free or tetrodotoxin-containing solution, which increased in amplitude with membrane hyperpolarization. This slow depolarization was blocked by Cd, indicating that it was also mediated by Ca. By intrastriatal stimulation in the presence of 4-aminopyridine a long-lasting, voltage-dependent depolarization was triggered from the enhanced postsynaptic potential. In contrast, in the presence of tetraethylammonium, postsynaptic potentials were only slightly increased if they were compared at sizes subthreshold for the plateau potentials. It is concluded that neostriatal neurons, although being characterized as "silent" and "non-bursting", possess slow conductances for inward currents which they share with other mammalian central neurons. However, in contrast, to other central neurons, their Ca-spikes are suppressed by their K-conductances and, in contrast to oscillating neurons, low-threshold Ca-potentials are not prominent.

Original languageEnglish
Pages (from-to)293-303
Number of pages11
JournalNeuroscience
Volume20
Issue number1
DOIs
Publication statusPublished - 1987

Fingerprint

Neurons
Membranes
Synaptic Potentials
Tetraethylammonium
Tetrodotoxin
4-Aminopyridine
Membrane Potentials
Fatigue
Injections
Brain

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity. / Calabresi, P.; Misgeld, U.; Dodt, H. U.

In: Neuroscience, Vol. 20, No. 1, 1987, p. 293-303.

Research output: Contribution to journalArticle

@article{fa8748010f654486a95f771e563688a2,
title = "Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity",
abstract = "Electroresponsiveness of neostriatal neurons was studied by intracellular recording in a rat brain slice preparation maintained in standard solution or in solution containing K-channel blockers. In standard solution, the neurons fired repetitively at increasing frequencies with increasing amplitude of direct depolarization. The firing pattern was independent of the membrane potential from which firing was induced. In the presence of tetraethylammonium (20 mM), long-lasting (300-500 ms) plateau potentials could be elicited by the injection of short (5-10 ms) current pulses. Plateau potentials persisted in Na-free solution, in the presence of tetrodotoxin (1-3 μM) and if Ca in the perifusate was replaced by Ba. The plateau was blocked by Cd (500 μM). The plateaux were followed by depolarizing afterpotentials. When the plateau potential failed due to fatigue, a small slow depolarization of short duration (10-30 ms) was elicited in Na-free or tetrodotoxin-containing solution, which increased in amplitude with membrane hyperpolarization. This slow depolarization was blocked by Cd, indicating that it was also mediated by Ca. By intrastriatal stimulation in the presence of 4-aminopyridine a long-lasting, voltage-dependent depolarization was triggered from the enhanced postsynaptic potential. In contrast, in the presence of tetraethylammonium, postsynaptic potentials were only slightly increased if they were compared at sizes subthreshold for the plateau potentials. It is concluded that neostriatal neurons, although being characterized as {"}silent{"} and {"}non-bursting{"}, possess slow conductances for inward currents which they share with other mammalian central neurons. However, in contrast, to other central neurons, their Ca-spikes are suppressed by their K-conductances and, in contrast to oscillating neurons, low-threshold Ca-potentials are not prominent.",
author = "P. Calabresi and U. Misgeld and Dodt, {H. U.}",
year = "1987",
doi = "10.1016/0306-4522(87)90021-2",
language = "English",
volume = "20",
pages = "293--303",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity

AU - Calabresi, P.

AU - Misgeld, U.

AU - Dodt, H. U.

PY - 1987

Y1 - 1987

N2 - Electroresponsiveness of neostriatal neurons was studied by intracellular recording in a rat brain slice preparation maintained in standard solution or in solution containing K-channel blockers. In standard solution, the neurons fired repetitively at increasing frequencies with increasing amplitude of direct depolarization. The firing pattern was independent of the membrane potential from which firing was induced. In the presence of tetraethylammonium (20 mM), long-lasting (300-500 ms) plateau potentials could be elicited by the injection of short (5-10 ms) current pulses. Plateau potentials persisted in Na-free solution, in the presence of tetrodotoxin (1-3 μM) and if Ca in the perifusate was replaced by Ba. The plateau was blocked by Cd (500 μM). The plateaux were followed by depolarizing afterpotentials. When the plateau potential failed due to fatigue, a small slow depolarization of short duration (10-30 ms) was elicited in Na-free or tetrodotoxin-containing solution, which increased in amplitude with membrane hyperpolarization. This slow depolarization was blocked by Cd, indicating that it was also mediated by Ca. By intrastriatal stimulation in the presence of 4-aminopyridine a long-lasting, voltage-dependent depolarization was triggered from the enhanced postsynaptic potential. In contrast, in the presence of tetraethylammonium, postsynaptic potentials were only slightly increased if they were compared at sizes subthreshold for the plateau potentials. It is concluded that neostriatal neurons, although being characterized as "silent" and "non-bursting", possess slow conductances for inward currents which they share with other mammalian central neurons. However, in contrast, to other central neurons, their Ca-spikes are suppressed by their K-conductances and, in contrast to oscillating neurons, low-threshold Ca-potentials are not prominent.

AB - Electroresponsiveness of neostriatal neurons was studied by intracellular recording in a rat brain slice preparation maintained in standard solution or in solution containing K-channel blockers. In standard solution, the neurons fired repetitively at increasing frequencies with increasing amplitude of direct depolarization. The firing pattern was independent of the membrane potential from which firing was induced. In the presence of tetraethylammonium (20 mM), long-lasting (300-500 ms) plateau potentials could be elicited by the injection of short (5-10 ms) current pulses. Plateau potentials persisted in Na-free solution, in the presence of tetrodotoxin (1-3 μM) and if Ca in the perifusate was replaced by Ba. The plateau was blocked by Cd (500 μM). The plateaux were followed by depolarizing afterpotentials. When the plateau potential failed due to fatigue, a small slow depolarization of short duration (10-30 ms) was elicited in Na-free or tetrodotoxin-containing solution, which increased in amplitude with membrane hyperpolarization. This slow depolarization was blocked by Cd, indicating that it was also mediated by Ca. By intrastriatal stimulation in the presence of 4-aminopyridine a long-lasting, voltage-dependent depolarization was triggered from the enhanced postsynaptic potential. In contrast, in the presence of tetraethylammonium, postsynaptic potentials were only slightly increased if they were compared at sizes subthreshold for the plateau potentials. It is concluded that neostriatal neurons, although being characterized as "silent" and "non-bursting", possess slow conductances for inward currents which they share with other mammalian central neurons. However, in contrast, to other central neurons, their Ca-spikes are suppressed by their K-conductances and, in contrast to oscillating neurons, low-threshold Ca-potentials are not prominent.

UR - http://www.scopus.com/inward/record.url?scp=0023131888&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023131888&partnerID=8YFLogxK

U2 - 10.1016/0306-4522(87)90021-2

DO - 10.1016/0306-4522(87)90021-2

M3 - Article

C2 - 2436089

AN - SCOPUS:0023131888

VL - 20

SP - 293

EP - 303

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 1

ER -