Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1

Cecilia Ambrosi, Federica Tiburzi, Francesco Imperi, Lorenza Putignani, Paolo Visca

Research output: Contribution to journalArticle

Abstract

In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a global regulatory protein which activates alginate, ppGpp, and inorganic polyphosphate synthesis through a cascade involving nucleoside diphosphate kinase (Ndk). AlgQ is also capable of interacting with region 4 of RpoD. In a reconstituted E. coli system, PvdS-dependent transcription from the pvdA promoter was doubled by the multicopy algQ gene. The P. aeruginosa ΔalgQ mutant exhibited a moderate but reproducible reduction in pyoverdine production compared with wild-type PAO1, as a result of a decline in transcription of pvd genes. PvdS expression was not affected by the algQ mutation. Single-copy algQ fully restored pyoverdine production and expression of pvd genes in the ΔalgQ mutant, while ndk did not. An increased intracellular concentration of RpoD mimicked the ΔalgQ phenotype, whereas PvdS overexpression suppressed the algQ mutation. E. coli rsd could partially substitute for algQ in transcriptional modulation of pvd genes. We propose that AlgQ acts as an anti-sigma factor for RpoD, eliciting core RNA polymerase recruitment by PvdS and transcription initiation at pvd promoters. AlgQ provides a link between the pyoverdine and alginate regulatory networks. These systems have similarities in responsiveness and physiological function: both depend on alternative sigma factors, respond to nutrient starvation, and act as virulence determinants for P. aeruginosa.

Original languageEnglish
Pages (from-to)5097-5107
Number of pages11
JournalJournal of Bacteriology
Volume187
Issue number15
DOIs
Publication statusPublished - Aug 2005

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Immunology

Fingerprint Dive into the research topics of 'Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1'. Together they form a unique fingerprint.

  • Cite this