IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload

Mauro Sbroggiò, Daniela Carnevale, Alessandro Bertero, Giuseppe Cifelli, Emanuele De Blasio, Giada Mascio, Emilio Hirsch, Wadie F. Bahou, Emilia Turco, Lorenzo Silengo, Mara Brancaccio, Giuseppe Lembo, Guido Tarone

Research output: Contribution to journalArticlepeer-review


Aims The Raf-MEK1/2-ERK1/2 (ERK1/2extracellular signal-regulated kinases 1/2) signalling cascade is crucial in triggering cardiac responses to different stress stimuli. Scaffold proteins are key elements in coordinating signalling molecules for their appropriate spatiotemporal activation. Here, we investigated the role of IQ motif-containing GTPase-activating protein 1 (IQGAP1), a scaffold for the ERK1/2 cascade, in heart function and remodelling in response to pressure overload. Methods and results IQGAP1-null mice have unaltered basal heart function. When subjected to pressure overload, IQGAP1-null mice initially develop a compensatory hypertrophy indistinguishable from that of wild-type (WT) mice. However, upon a prolonged stimulus, the hypertrophic response develops towards a thinning of left ventricular walls, chamber dilation, and a decrease in contractility, in an accelerated fashion compared with WT mice. This unfavourable cardiac remodelling is characterized by blunted reactivation of the foetal gene programme, impaired cardiomyocyte hypertrophy, and increased cardiomyocyte apoptosis. Analysis of signalling pathways revealed two temporally distinct waves of both ERK1/2 and AKT phosphorylation peaking, respectively, at 10 min and 4 days after aortic banding in WT hearts. IQGAP1-null mice show strongly impaired phosphorylation of MEK1/2-ERK1/2 and AKT following 4 days of pressure overload, but normal activation of these kinases after 10 min. Pull-down experiments indicated that IQGAP1 is able to bind the three components of the ERK cascade, namely c-Raf, MEK1/2, and ERK1/2, as well as AKT in the heart. Conclusion These data demonstrate, for the first time, a key role for the scaffold protein IQGAP1 in integrating hypertrophy and survival signals in the heart and regulating long-term left ventricle remodelling upon pressure overload.

Original languageEnglish
Pages (from-to)456-464
Number of pages9
JournalCardiovascular Research
Issue number3
Publication statusPublished - Aug 1 2011


  • AKT
  • Heart hypertrophy
  • IQGAP1
  • MAPKs
  • Pressure overload

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)
  • Physiology


Dive into the research topics of 'IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload'. Together they form a unique fingerprint.

Cite this