TY - JOUR
T1 - Iron deposition in Parkinsonisms
T2 - A Quantitative Susceptibility Mapping study in the deep grey matter
AU - Fedeli, Maria Paola
AU - Contarino, Valeria Elisa
AU - Siggillino, Silvia
AU - Samoylova, Nina
AU - Calloni, Sonia
AU - Melazzini, Luca
AU - Conte, Giorgio
AU - Sacilotto, Giorgio
AU - Pezzoli, Gianni
AU - Triulzi, Fabio Maria
AU - Scola, Elisa
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - Purpose: The aim of the study is to quantify the susceptibility in deep grey nuclei that are affected by pathological processes related to iron accumulation in patients with Parkinson's disease and primary atypical parkinsonisms such as Progressive Supranuclear Palsy, Multiple System Atrophy and Cortico-Basal Degeneration, in order to assist the differential diagnosis among parkinsonian syndromes. Methods: We enrolled 49 patients with Parkinson's disease and 26 patients with primary atypical parkinsonisms. Automatic segmentation of putamen, globus pallidus, caudate nucleus and thalamus and manual segmentation of red nuclei and substantia nigra were performed, and region of interest-based Quantitative Susceptibility Mapping analysis were performed. Statistical comparisons of the mean susceptibility values in the segmented brain regions were performed among primary atypical parkinsonisms and Parkinson's disease. Results: Susceptibility values in red nuclei were increased in Progressive Supranuclear Palsy patients compared to parkinsonian phenotype Multiple System Atrophy (p = 0.004), and Parkinson's disease patients (p = 0.006). Susceptibility in thalamus was decreased in Cortico-Basal Degeneration patients compared to Parkinson's disease (p = 0.006), Multiple System Atrophy with cerebellar phenotype (p = 0.031) and parkinsonian phenotype (p = 0.001) patients, and in Progressive Supranuclear Palsy patients compared to Multiple System Atrophy with parkinsonian phenotype patients (p = 0.012). Conclusions: Quantitative Susceptibility Mapping allows the depiction and quantification of different patterns of iron deposition in the deep gray nuclei occurring in primary atypical parkinsonisms and Parkinson's disease and it may help as a non-invasive tool in the differential diagnosis between parkinsonian syndromes.
AB - Purpose: The aim of the study is to quantify the susceptibility in deep grey nuclei that are affected by pathological processes related to iron accumulation in patients with Parkinson's disease and primary atypical parkinsonisms such as Progressive Supranuclear Palsy, Multiple System Atrophy and Cortico-Basal Degeneration, in order to assist the differential diagnosis among parkinsonian syndromes. Methods: We enrolled 49 patients with Parkinson's disease and 26 patients with primary atypical parkinsonisms. Automatic segmentation of putamen, globus pallidus, caudate nucleus and thalamus and manual segmentation of red nuclei and substantia nigra were performed, and region of interest-based Quantitative Susceptibility Mapping analysis were performed. Statistical comparisons of the mean susceptibility values in the segmented brain regions were performed among primary atypical parkinsonisms and Parkinson's disease. Results: Susceptibility values in red nuclei were increased in Progressive Supranuclear Palsy patients compared to parkinsonian phenotype Multiple System Atrophy (p = 0.004), and Parkinson's disease patients (p = 0.006). Susceptibility in thalamus was decreased in Cortico-Basal Degeneration patients compared to Parkinson's disease (p = 0.006), Multiple System Atrophy with cerebellar phenotype (p = 0.031) and parkinsonian phenotype (p = 0.001) patients, and in Progressive Supranuclear Palsy patients compared to Multiple System Atrophy with parkinsonian phenotype patients (p = 0.012). Conclusions: Quantitative Susceptibility Mapping allows the depiction and quantification of different patterns of iron deposition in the deep gray nuclei occurring in primary atypical parkinsonisms and Parkinson's disease and it may help as a non-invasive tool in the differential diagnosis between parkinsonian syndromes.
KW - Atypical primary parkinsonism
KW - Iron deposition
KW - Magnetic resonance imaging
KW - Parkinson's disease
KW - Quantitative susceptibility mapping
UR - http://www.scopus.com/inward/record.url?scp=85096157085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096157085&partnerID=8YFLogxK
U2 - 10.1016/j.ejrad.2020.109394
DO - 10.1016/j.ejrad.2020.109394
M3 - Article
C2 - 33190103
AN - SCOPUS:85096157085
VL - 133
JO - European Journal of Radiology
JF - European Journal of Radiology
SN - 0720-048X
M1 - 109394
ER -