Is a preserved functional reserve a mechanism limiting clinical impairment in pediatric MS patients?

Maria A. Rocca, Martina Absinta, Angelo Ghezzi, Lucia Moiola, Giancarlo Comi, Massimo Filippi

Research output: Contribution to journalArticlepeer-review


We evaluated the functional magnetic resonance imaging (fMRI) correlates of simple movement performance in patients with pediatric multiple sclerosis (MS) and their relation with the extent of T2 lesion volume (LV), to improve our understanding of the mechanisms leading to their short/medium term favorable clinical course. We obtained fMRI during repetitive flexion-extension of the last four fingers of the right hand and brain dual-echo scans from 17 right-handed patients with pediatric relapsing-remitting MS and 9 sex- and age-matched right-handed healthy controls. T2 LV was measured using a local thresholding segmentation technique. fMRI activations and functional connectivity analysis were performed using SPM2. Compared to controls, pediatric MS patients had an increased recruitment of the left (L) primary sensorimotor cortex (SMC). They also showed reduced functional connectivity between the L primary SMC and the L thalamus (P = 0.03), the L insula and the L secondary sensorimotor cortex (SII) (P = 0.02), the supplementary motor area and the L SII (P = 0.02), the L thalamus and the L insula (P = 0.01) and the L thalamus and the L SII (P = 0.003). In patients with pediatric MS, the activity of the L primary SMC was significantly correlated with brain T2 LV (r = 0.78). No correlation was found between coefficients of abnormal connectivity and structural MRI measures. The maintenance of a selective and strictly lateralized pattern of movement-associated brain activations and a modulation of its functional connections suggest a preserved functional reserve in patients with pediatric MS, which, in turn, might contribute to explain their favorable clinical evolution at short/medium term.

Original languageEnglish
Pages (from-to)2844-2851
Number of pages8
JournalHuman Brain Mapping
Issue number9
Publication statusPublished - Sep 15 2009


  • Adaptation
  • Functional magnetic resonance imaging
  • Pediatric multiple sclerosis
  • Reserve

ASJC Scopus subject areas

  • Clinical Neurology
  • Anatomy
  • Neurology
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology


Dive into the research topics of 'Is a preserved functional reserve a mechanism limiting clinical impairment in pediatric MS patients?'. Together they form a unique fingerprint.

Cite this