L-Asparagine depletion in plasma and cerebrospinal fluid of children with acute lymphoblastic leukemia during subsequent exposures to Erwinia L-asparaginase

D. Gentili, V. Conter, C. Rizzari, B. Tschuemperlin, M. Zucchetti, D. Orlandoni, M. D'Incalci, G. Masera

Research output: Contribution to journalArticle

Abstract

Background: Monitoring L-asparagine (L-ASN) plasma levels could provide information useful for determining whether the dosage or schedule of L-asparaginase (L-ASE) administration is adequate. Very few data are available on depletion caused by the Erwinia chrysanthemi (E. chrysanthemi) product. Since it has been suggested that L-ASN depletion may have been overestimated in the past due to residual L-ASE activity, samples in this study have been analyzed after deproteinization with sulphosalicylic acid. Patients undergoing subsequent exposures to L-ASE derived from E. chrysanthemi have been investigated. Patients and methods: Fifty-four children with newly diagnosed acute lymphoblastic leukemia (ALL) at our institution entered this study. L-ASE was given at conventional doses (10,000 IU/sqm) every three days during the induction phase (8 doses, first exposure) or twice a week (4 doses, second exposure) during the reinduction phase. High-dose L-ASE (i.e., HD-L-ASE 25,000 IU/sqm) was given weekly, for a total of 20 doses, as a second or third exposure during the reinduction and/or maintenance phases. To determine the plasma levels of L-ASN, samples were deproteinized with sulphosalicylic acid, stored at -80°C and then analyzed by HPLC after precolumn derivatization with o-phthaldialdehyde. The CSF samples were analyzed by the same procedure. An experiment was carried out to detect in vitro L-ASE deactivation in patients' plasma. Results: L-ASN plasma depletion was observed in 80% of the cases during the first exposure to conventional doses of L-ASE and only in 25% of the cases during the second or third exposures to either conventional or high doses of L-ASE. A correlation was found between plasma and CSF L-ASN levels. Activity inhibitory to L-ASE was found in the plasma of patients not depleted during L-ASE treatment and was not found in the plasma of those in whom L-ASN plasma depletion was obtained. Conclusions: L-ASN plasma depletion is regularly obtained in the majority of patients during the first exposure to conventional doses of E. chrysanthemi L-ASE. Conversely, in most cases depletion does not occur during subsequent exposures. Studies should be performed to evaluate whether L-ASE derived from different species or conjugated with polyethylene-glycole are effective in obtaining L-ASN plasma depletion in patients previously treated with Erwinia C. L-ASE. The clinical impact of L-ASN depletion should also be investigated in large cohorts of patients.

Original languageEnglish
Pages (from-to)725-730
Number of pages6
JournalAnnals of Oncology
Volume7
Issue number7
Publication statusPublished - Sep 1996

Fingerprint

Erwinia
Asparaginase
Asparagine
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Cerebrospinal Fluid
Pectobacterium chrysanthemi
o-Phthalaldehyde
Acids
Polyethylene

Keywords

  • Acute lymphoblastic leukemia
  • Erwinia chrysanthemi
  • L-asparaginase
  • L-asparagine depletion

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

L-Asparagine depletion in plasma and cerebrospinal fluid of children with acute lymphoblastic leukemia during subsequent exposures to Erwinia L-asparaginase. / Gentili, D.; Conter, V.; Rizzari, C.; Tschuemperlin, B.; Zucchetti, M.; Orlandoni, D.; D'Incalci, M.; Masera, G.

In: Annals of Oncology, Vol. 7, No. 7, 09.1996, p. 725-730.

Research output: Contribution to journalArticle

@article{8bc2612b60b64781a0d3b70980a9e0f7,
title = "L-Asparagine depletion in plasma and cerebrospinal fluid of children with acute lymphoblastic leukemia during subsequent exposures to Erwinia L-asparaginase",
abstract = "Background: Monitoring L-asparagine (L-ASN) plasma levels could provide information useful for determining whether the dosage or schedule of L-asparaginase (L-ASE) administration is adequate. Very few data are available on depletion caused by the Erwinia chrysanthemi (E. chrysanthemi) product. Since it has been suggested that L-ASN depletion may have been overestimated in the past due to residual L-ASE activity, samples in this study have been analyzed after deproteinization with sulphosalicylic acid. Patients undergoing subsequent exposures to L-ASE derived from E. chrysanthemi have been investigated. Patients and methods: Fifty-four children with newly diagnosed acute lymphoblastic leukemia (ALL) at our institution entered this study. L-ASE was given at conventional doses (10,000 IU/sqm) every three days during the induction phase (8 doses, first exposure) or twice a week (4 doses, second exposure) during the reinduction phase. High-dose L-ASE (i.e., HD-L-ASE 25,000 IU/sqm) was given weekly, for a total of 20 doses, as a second or third exposure during the reinduction and/or maintenance phases. To determine the plasma levels of L-ASN, samples were deproteinized with sulphosalicylic acid, stored at -80°C and then analyzed by HPLC after precolumn derivatization with o-phthaldialdehyde. The CSF samples were analyzed by the same procedure. An experiment was carried out to detect in vitro L-ASE deactivation in patients' plasma. Results: L-ASN plasma depletion was observed in 80{\%} of the cases during the first exposure to conventional doses of L-ASE and only in 25{\%} of the cases during the second or third exposures to either conventional or high doses of L-ASE. A correlation was found between plasma and CSF L-ASN levels. Activity inhibitory to L-ASE was found in the plasma of patients not depleted during L-ASE treatment and was not found in the plasma of those in whom L-ASN plasma depletion was obtained. Conclusions: L-ASN plasma depletion is regularly obtained in the majority of patients during the first exposure to conventional doses of E. chrysanthemi L-ASE. Conversely, in most cases depletion does not occur during subsequent exposures. Studies should be performed to evaluate whether L-ASE derived from different species or conjugated with polyethylene-glycole are effective in obtaining L-ASN plasma depletion in patients previously treated with Erwinia C. L-ASE. The clinical impact of L-ASN depletion should also be investigated in large cohorts of patients.",
keywords = "Acute lymphoblastic leukemia, Erwinia chrysanthemi, L-asparaginase, L-asparagine depletion",
author = "D. Gentili and V. Conter and C. Rizzari and B. Tschuemperlin and M. Zucchetti and D. Orlandoni and M. D'Incalci and G. Masera",
year = "1996",
month = "9",
language = "English",
volume = "7",
pages = "725--730",
journal = "Annals of Oncology",
issn = "0923-7534",
publisher = "NLM (Medline)",
number = "7",

}

TY - JOUR

T1 - L-Asparagine depletion in plasma and cerebrospinal fluid of children with acute lymphoblastic leukemia during subsequent exposures to Erwinia L-asparaginase

AU - Gentili, D.

AU - Conter, V.

AU - Rizzari, C.

AU - Tschuemperlin, B.

AU - Zucchetti, M.

AU - Orlandoni, D.

AU - D'Incalci, M.

AU - Masera, G.

PY - 1996/9

Y1 - 1996/9

N2 - Background: Monitoring L-asparagine (L-ASN) plasma levels could provide information useful for determining whether the dosage or schedule of L-asparaginase (L-ASE) administration is adequate. Very few data are available on depletion caused by the Erwinia chrysanthemi (E. chrysanthemi) product. Since it has been suggested that L-ASN depletion may have been overestimated in the past due to residual L-ASE activity, samples in this study have been analyzed after deproteinization with sulphosalicylic acid. Patients undergoing subsequent exposures to L-ASE derived from E. chrysanthemi have been investigated. Patients and methods: Fifty-four children with newly diagnosed acute lymphoblastic leukemia (ALL) at our institution entered this study. L-ASE was given at conventional doses (10,000 IU/sqm) every three days during the induction phase (8 doses, first exposure) or twice a week (4 doses, second exposure) during the reinduction phase. High-dose L-ASE (i.e., HD-L-ASE 25,000 IU/sqm) was given weekly, for a total of 20 doses, as a second or third exposure during the reinduction and/or maintenance phases. To determine the plasma levels of L-ASN, samples were deproteinized with sulphosalicylic acid, stored at -80°C and then analyzed by HPLC after precolumn derivatization with o-phthaldialdehyde. The CSF samples were analyzed by the same procedure. An experiment was carried out to detect in vitro L-ASE deactivation in patients' plasma. Results: L-ASN plasma depletion was observed in 80% of the cases during the first exposure to conventional doses of L-ASE and only in 25% of the cases during the second or third exposures to either conventional or high doses of L-ASE. A correlation was found between plasma and CSF L-ASN levels. Activity inhibitory to L-ASE was found in the plasma of patients not depleted during L-ASE treatment and was not found in the plasma of those in whom L-ASN plasma depletion was obtained. Conclusions: L-ASN plasma depletion is regularly obtained in the majority of patients during the first exposure to conventional doses of E. chrysanthemi L-ASE. Conversely, in most cases depletion does not occur during subsequent exposures. Studies should be performed to evaluate whether L-ASE derived from different species or conjugated with polyethylene-glycole are effective in obtaining L-ASN plasma depletion in patients previously treated with Erwinia C. L-ASE. The clinical impact of L-ASN depletion should also be investigated in large cohorts of patients.

AB - Background: Monitoring L-asparagine (L-ASN) plasma levels could provide information useful for determining whether the dosage or schedule of L-asparaginase (L-ASE) administration is adequate. Very few data are available on depletion caused by the Erwinia chrysanthemi (E. chrysanthemi) product. Since it has been suggested that L-ASN depletion may have been overestimated in the past due to residual L-ASE activity, samples in this study have been analyzed after deproteinization with sulphosalicylic acid. Patients undergoing subsequent exposures to L-ASE derived from E. chrysanthemi have been investigated. Patients and methods: Fifty-four children with newly diagnosed acute lymphoblastic leukemia (ALL) at our institution entered this study. L-ASE was given at conventional doses (10,000 IU/sqm) every three days during the induction phase (8 doses, first exposure) or twice a week (4 doses, second exposure) during the reinduction phase. High-dose L-ASE (i.e., HD-L-ASE 25,000 IU/sqm) was given weekly, for a total of 20 doses, as a second or third exposure during the reinduction and/or maintenance phases. To determine the plasma levels of L-ASN, samples were deproteinized with sulphosalicylic acid, stored at -80°C and then analyzed by HPLC after precolumn derivatization with o-phthaldialdehyde. The CSF samples were analyzed by the same procedure. An experiment was carried out to detect in vitro L-ASE deactivation in patients' plasma. Results: L-ASN plasma depletion was observed in 80% of the cases during the first exposure to conventional doses of L-ASE and only in 25% of the cases during the second or third exposures to either conventional or high doses of L-ASE. A correlation was found between plasma and CSF L-ASN levels. Activity inhibitory to L-ASE was found in the plasma of patients not depleted during L-ASE treatment and was not found in the plasma of those in whom L-ASN plasma depletion was obtained. Conclusions: L-ASN plasma depletion is regularly obtained in the majority of patients during the first exposure to conventional doses of E. chrysanthemi L-ASE. Conversely, in most cases depletion does not occur during subsequent exposures. Studies should be performed to evaluate whether L-ASE derived from different species or conjugated with polyethylene-glycole are effective in obtaining L-ASN plasma depletion in patients previously treated with Erwinia C. L-ASE. The clinical impact of L-ASN depletion should also be investigated in large cohorts of patients.

KW - Acute lymphoblastic leukemia

KW - Erwinia chrysanthemi

KW - L-asparaginase

KW - L-asparagine depletion

UR - http://www.scopus.com/inward/record.url?scp=0029810891&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029810891&partnerID=8YFLogxK

M3 - Article

C2 - 8905031

AN - SCOPUS:0029810891

VL - 7

SP - 725

EP - 730

JO - Annals of Oncology

JF - Annals of Oncology

SN - 0923-7534

IS - 7

ER -