Landmark sequencing and route knowledge: An fMRI study

Federico Nemmi, Federica Piras, Patrice Péran, Chiara Incoccia, Umberto Sabatini, Cecilia Guariglia

Research output: Contribution to journalArticlepeer-review


Introduction: The ability to navigate in a familiar environment mainly relies on route knowledge, that is, a mental representation of relevant locations along a way, sequenced according to a navigational goal. Despite the clear ecological validity of this issue, route navigation and route knowledge have been scarcely investigated and little is known about the neural and cognitive bases of this navigational strategy. Using functional magnetic resonance imaging (fMRI) we tested the validity of the predictions based on the main cognitive models of spatial knowledge acquisition about route-based navigation. Methods: An order judgment task was used with two conditions (route and activity). Subjects were required to detect potential mismatches between a current sensory input and expectations deriving from route and activity knowledge. Results: A medial occipto-temporal (e.g., lingual gyrus, calcarine cortex, fusiform gyrus, parahippocampal cortex) network was found activated during the route task, whereas a temporo-parietal (temporo-parietal junction) and frontal (e.g., Broca's area) network was related to the activity task. Conclusions: Functional data are congruent with cognitive models of route-based navigation. The route task activated areas related to both landmark identity and landmark order. Data are discussed in view of route-based navigation models.

Original languageEnglish
Pages (from-to)507-519
Number of pages13
Issue number2
Publication statusPublished - Feb 2013


  • Environmental navigation
  • Route knowledge
  • Sequencing
  • Topographical orientation

ASJC Scopus subject areas

  • Clinical Neurology
  • Neurology
  • Arts and Humanities (miscellaneous)
  • Developmental and Educational Psychology


Dive into the research topics of 'Landmark sequencing and route knowledge: An fMRI study'. Together they form a unique fingerprint.

Cite this