Large artery remodeling and dynamics following simulated microgravity by prolonged head-down tilt bed rest in humans

Carlo Palombo, Carmela Morizzo, Martino Baluci, Daniela Lucini, Stefano Ricci, Gianni Biolo, Piero Tortoli, Michaela Kozakova

Research output: Contribution to journalArticlepeer-review

Abstract

The effects of simulated microgravity on the static and dynamic properties of large arteries are still mostly unknown. The present study evaluated, using an integrated vascular approach, changes in structure and function of the common carotid and femoral arteries (CCA and CFA) after prolonged head-down tilt bed rest (HDTBR). Ten healthy men were enrolled in a 5-week HDTBR study endorsed by the Italian Space Agency (ASI). Arterial geometry, flow, stiffness, and shear rate were evaluated by ultrasound. Local carotid pulse pressure and wave reflection were studied by applanation tonometry. After five weeks of HDTBR, CFA showed a decrease in lumen diameter without significant changes in wall thickness (IMT), resulting in an inward remodeling. Local carotid pulse pressure decreased and carotid-to-brachial pressure amplification increased. The ratio of systolic-to-diastolic volumetric flow in CFA decreased, whereas in CCA it tended to increase. Indices of arterial stiffness and shear rate did not change during HDTBR, either in CCA or CFA. In summary, prolonged HDTBR has a different impact on CCA and CFA structure and flow, probably depending on the characteristics of the vascular bed perfused.

Original languageEnglish
Article number342565
JournalBioMed Research International
Volume2015
DOIs
Publication statusPublished - Jan 13 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Large artery remodeling and dynamics following simulated microgravity by prolonged head-down tilt bed rest in humans'. Together they form a unique fingerprint.

Cite this