LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder

Xue Dong, Stefania Mondello, Firas Kobeissy, Farid Talih, Raffaele Ferri, Yehia Mechref

Research output: Contribution to journalArticle

Abstract

Idiopathic REM sleep behavior disorder (iRBD) is now considered a prodromal stage of an α-synucleinopathy-related to neurodegenerative disease such as Parkinson's diseases. Emerging evidence has shown that posttranslational glycosylation events are implicated in dynamic disease mechanisms and the onset of many pathological conditions. We hypothesized that the characterization of the glycosylation pattern of patients with RDB would be of great value to understand the pathophysiology and underlying mechanisms and represent potentially useful biomarkers for disease-associated molecular changes. To test this hypothesis, we assessed the serum glycome of patients with RBD and compared to that of healthy controls. NanoRPLC-MS was used to generate quantitative N-glycan profiles while high-temperature PGC-LC-MS platform was employed to generate quantitative isomeric N-glycan profiles. By analyzing permethylated glycans derived from human blood sera on C18-LC-MS/MS, we identified 59 N-glycan structures in healthy (control) cohort, 56 N-glycans in RBD cohort. Sixteen N-glycans structures were found to be significantly altered in the RBD cohort (p < 0.05). N-glycans with the composition of HexNAc4 Hex5 Fuc1 , HexNAc5 Hex5 , and HexNAc4 Hex5 Fuc1 NeuAc1 presented the most substantial difference between controls and RBD patients (p < 0.01). HexNAc4 Hex5 Fuc1 NeuAc1 showed a relatively high abundance (3.1 ± 0.7% in the control cohort vs. 4 ± 3% in the idiopathic RBD cohort). These N-glycans can be potential diagnostic biomarker candidates and provide a window into underlying neurodegenerative processes in patients with idiopathic RBD. In addition, 7 N-glycan isomers were significantly different between controls and RBD patients (p < 0.05). HexNAc4 Hex5 Fuc1 NeuAc1 (4511-2) and HexNAc4 Hex5 Fuc1 NeuAc2 (4512-2) showed the most substantial difference between the control and idiopathic RBD cohorts (p < 0.001). Levels of both these two isomeric structures were higher in the idiopathic RBD cohort. Further larger studies are required to assess the reproducibility of these findings and to elucidate the role played by the changes in glycan structures in the pathogenetic mechanisms of RBD. This information will be instrumental in developing molecular therapeutic targets to promote neuroprotection and prevention of neurodegeneration. This article is protected by copyright. All rights reserved.

Original languageEnglish
JournalElectrophoresis
DOIs
Publication statusE-pub ahead of print - Aug 31 2018

Fingerprint

REM Sleep Behavior Disorder
Glycomics
Eye movements
Polysaccharides
Glycosylation
Biomarkers
Sleep
Neurodegenerative diseases
Prodromal Symptoms
Serum
Reproducibility of Results
Isomers
Neurodegenerative Diseases
Parkinson Disease
Blood

Cite this

LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder. / Dong, Xue; Mondello, Stefania; Kobeissy, Firas; Talih, Farid; Ferri, Raffaele; Mechref, Yehia.

In: Electrophoresis, 31.08.2018.

Research output: Contribution to journalArticle

Dong, Xue ; Mondello, Stefania ; Kobeissy, Firas ; Talih, Farid ; Ferri, Raffaele ; Mechref, Yehia. / LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder. In: Electrophoresis. 2018.
@article{28eb08a7c1864eefb7f7c76f348cb152,
title = "LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder",
abstract = "Idiopathic REM sleep behavior disorder (iRBD) is now considered a prodromal stage of an α-synucleinopathy-related to neurodegenerative disease such as Parkinson's diseases. Emerging evidence has shown that posttranslational glycosylation events are implicated in dynamic disease mechanisms and the onset of many pathological conditions. We hypothesized that the characterization of the glycosylation pattern of patients with RDB would be of great value to understand the pathophysiology and underlying mechanisms and represent potentially useful biomarkers for disease-associated molecular changes. To test this hypothesis, we assessed the serum glycome of patients with RBD and compared to that of healthy controls. NanoRPLC-MS was used to generate quantitative N-glycan profiles while high-temperature PGC-LC-MS platform was employed to generate quantitative isomeric N-glycan profiles. By analyzing permethylated glycans derived from human blood sera on C18-LC-MS/MS, we identified 59 N-glycan structures in healthy (control) cohort, 56 N-glycans in RBD cohort. Sixteen N-glycans structures were found to be significantly altered in the RBD cohort (p < 0.05). N-glycans with the composition of HexNAc4 Hex5 Fuc1 , HexNAc5 Hex5 , and HexNAc4 Hex5 Fuc1 NeuAc1 presented the most substantial difference between controls and RBD patients (p < 0.01). HexNAc4 Hex5 Fuc1 NeuAc1 showed a relatively high abundance (3.1 ± 0.7{\%} in the control cohort vs. 4 ± 3{\%} in the idiopathic RBD cohort). These N-glycans can be potential diagnostic biomarker candidates and provide a window into underlying neurodegenerative processes in patients with idiopathic RBD. In addition, 7 N-glycan isomers were significantly different between controls and RBD patients (p < 0.05). HexNAc4 Hex5 Fuc1 NeuAc1 (4511-2) and HexNAc4 Hex5 Fuc1 NeuAc2 (4512-2) showed the most substantial difference between the control and idiopathic RBD cohorts (p < 0.001). Levels of both these two isomeric structures were higher in the idiopathic RBD cohort. Further larger studies are required to assess the reproducibility of these findings and to elucidate the role played by the changes in glycan structures in the pathogenetic mechanisms of RBD. This information will be instrumental in developing molecular therapeutic targets to promote neuroprotection and prevention of neurodegeneration. This article is protected by copyright. All rights reserved.",
author = "Xue Dong and Stefania Mondello and Firas Kobeissy and Farid Talih and Raffaele Ferri and Yehia Mechref",
note = "This article is protected by copyright. All rights reserved.",
year = "2018",
month = "8",
day = "31",
doi = "10.1002/elps.201800316",
language = "English",
journal = "Electrophoresis",
issn = "0173-0835",
publisher = "Wiley-VCH Verlag",

}

TY - JOUR

T1 - LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder

AU - Dong, Xue

AU - Mondello, Stefania

AU - Kobeissy, Firas

AU - Talih, Farid

AU - Ferri, Raffaele

AU - Mechref, Yehia

N1 - This article is protected by copyright. All rights reserved.

PY - 2018/8/31

Y1 - 2018/8/31

N2 - Idiopathic REM sleep behavior disorder (iRBD) is now considered a prodromal stage of an α-synucleinopathy-related to neurodegenerative disease such as Parkinson's diseases. Emerging evidence has shown that posttranslational glycosylation events are implicated in dynamic disease mechanisms and the onset of many pathological conditions. We hypothesized that the characterization of the glycosylation pattern of patients with RDB would be of great value to understand the pathophysiology and underlying mechanisms and represent potentially useful biomarkers for disease-associated molecular changes. To test this hypothesis, we assessed the serum glycome of patients with RBD and compared to that of healthy controls. NanoRPLC-MS was used to generate quantitative N-glycan profiles while high-temperature PGC-LC-MS platform was employed to generate quantitative isomeric N-glycan profiles. By analyzing permethylated glycans derived from human blood sera on C18-LC-MS/MS, we identified 59 N-glycan structures in healthy (control) cohort, 56 N-glycans in RBD cohort. Sixteen N-glycans structures were found to be significantly altered in the RBD cohort (p < 0.05). N-glycans with the composition of HexNAc4 Hex5 Fuc1 , HexNAc5 Hex5 , and HexNAc4 Hex5 Fuc1 NeuAc1 presented the most substantial difference between controls and RBD patients (p < 0.01). HexNAc4 Hex5 Fuc1 NeuAc1 showed a relatively high abundance (3.1 ± 0.7% in the control cohort vs. 4 ± 3% in the idiopathic RBD cohort). These N-glycans can be potential diagnostic biomarker candidates and provide a window into underlying neurodegenerative processes in patients with idiopathic RBD. In addition, 7 N-glycan isomers were significantly different between controls and RBD patients (p < 0.05). HexNAc4 Hex5 Fuc1 NeuAc1 (4511-2) and HexNAc4 Hex5 Fuc1 NeuAc2 (4512-2) showed the most substantial difference between the control and idiopathic RBD cohorts (p < 0.001). Levels of both these two isomeric structures were higher in the idiopathic RBD cohort. Further larger studies are required to assess the reproducibility of these findings and to elucidate the role played by the changes in glycan structures in the pathogenetic mechanisms of RBD. This information will be instrumental in developing molecular therapeutic targets to promote neuroprotection and prevention of neurodegeneration. This article is protected by copyright. All rights reserved.

AB - Idiopathic REM sleep behavior disorder (iRBD) is now considered a prodromal stage of an α-synucleinopathy-related to neurodegenerative disease such as Parkinson's diseases. Emerging evidence has shown that posttranslational glycosylation events are implicated in dynamic disease mechanisms and the onset of many pathological conditions. We hypothesized that the characterization of the glycosylation pattern of patients with RDB would be of great value to understand the pathophysiology and underlying mechanisms and represent potentially useful biomarkers for disease-associated molecular changes. To test this hypothesis, we assessed the serum glycome of patients with RBD and compared to that of healthy controls. NanoRPLC-MS was used to generate quantitative N-glycan profiles while high-temperature PGC-LC-MS platform was employed to generate quantitative isomeric N-glycan profiles. By analyzing permethylated glycans derived from human blood sera on C18-LC-MS/MS, we identified 59 N-glycan structures in healthy (control) cohort, 56 N-glycans in RBD cohort. Sixteen N-glycans structures were found to be significantly altered in the RBD cohort (p < 0.05). N-glycans with the composition of HexNAc4 Hex5 Fuc1 , HexNAc5 Hex5 , and HexNAc4 Hex5 Fuc1 NeuAc1 presented the most substantial difference between controls and RBD patients (p < 0.01). HexNAc4 Hex5 Fuc1 NeuAc1 showed a relatively high abundance (3.1 ± 0.7% in the control cohort vs. 4 ± 3% in the idiopathic RBD cohort). These N-glycans can be potential diagnostic biomarker candidates and provide a window into underlying neurodegenerative processes in patients with idiopathic RBD. In addition, 7 N-glycan isomers were significantly different between controls and RBD patients (p < 0.05). HexNAc4 Hex5 Fuc1 NeuAc1 (4511-2) and HexNAc4 Hex5 Fuc1 NeuAc2 (4512-2) showed the most substantial difference between the control and idiopathic RBD cohorts (p < 0.001). Levels of both these two isomeric structures were higher in the idiopathic RBD cohort. Further larger studies are required to assess the reproducibility of these findings and to elucidate the role played by the changes in glycan structures in the pathogenetic mechanisms of RBD. This information will be instrumental in developing molecular therapeutic targets to promote neuroprotection and prevention of neurodegeneration. This article is protected by copyright. All rights reserved.

U2 - 10.1002/elps.201800316

DO - 10.1002/elps.201800316

M3 - Article

JO - Electrophoresis

JF - Electrophoresis

SN - 0173-0835

ER -