Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity

V. Leuci, F. Maione, Ramona Rotolo, E. Giraudo, F. Sassi, G. Migliardi, M. Todorovic, L. Gammaitoni, G. Mesiano, L. Giraudo, P. Luraghi, F. Leone, F. Bussolino, G. Grignani, M. Aglietta, L. Trusolino, A. Bertotti, D. Sangiolo

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Background: Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. Methods: We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. Results: Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. Conclusions: We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization.

Original languageEnglish
Article number119
JournalJournal of Translational Medicine
Volume14
Issue number1
DOIs
Publication statusPublished - May 5 2016

Fingerprint

Chemotherapy
Tumors
Colorectal Neoplasms
Drug Therapy
Neoplasms
Fluorouracil
Pericytes
Perfusion
lenalidomide
Inbred NOD Mouse
SCID Mice
Residual Neoplasm
Hematologic Neoplasms
Therapeutics
Liver Neoplasms
Lectins
Pharmaceutical Preparations
Liver
Neoplasm Metastasis
Cells

Keywords

  • Colorectal cancer
  • Lenalidomide
  • Tumor-vessel normalization

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

@article{165aa9508cfa49bcafd12f01ea64b350,
title = "Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity",
abstract = "Background: Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. Methods: We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. Results: Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. Conclusions: We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization.",
keywords = "Colorectal cancer, Lenalidomide, Tumor-vessel normalization",
author = "V. Leuci and F. Maione and Ramona Rotolo and E. Giraudo and F. Sassi and G. Migliardi and M. Todorovic and L. Gammaitoni and G. Mesiano and L. Giraudo and P. Luraghi and F. Leone and F. Bussolino and G. Grignani and M. Aglietta and L. Trusolino and A. Bertotti and D. Sangiolo",
year = "2016",
month = "5",
day = "5",
doi = "10.1186/s12967-016-0872-2",
language = "English",
volume = "14",
journal = "Journal of Translational Medicine",
issn = "1479-5876",
publisher = "BioMed Central Ltd.",
number = "1",

}

TY - JOUR

T1 - Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity

AU - Leuci, V.

AU - Maione, F.

AU - Rotolo, Ramona

AU - Giraudo, E.

AU - Sassi, F.

AU - Migliardi, G.

AU - Todorovic, M.

AU - Gammaitoni, L.

AU - Mesiano, G.

AU - Giraudo, L.

AU - Luraghi, P.

AU - Leone, F.

AU - Bussolino, F.

AU - Grignani, G.

AU - Aglietta, M.

AU - Trusolino, L.

AU - Bertotti, A.

AU - Sangiolo, D.

PY - 2016/5/5

Y1 - 2016/5/5

N2 - Background: Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. Methods: We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. Results: Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. Conclusions: We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization.

AB - Background: Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. Methods: We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. Results: Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. Conclusions: We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization.

KW - Colorectal cancer

KW - Lenalidomide

KW - Tumor-vessel normalization

UR - http://www.scopus.com/inward/record.url?scp=84965066786&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84965066786&partnerID=8YFLogxK

U2 - 10.1186/s12967-016-0872-2

DO - 10.1186/s12967-016-0872-2

M3 - Article

VL - 14

JO - Journal of Translational Medicine

JF - Journal of Translational Medicine

SN - 1479-5876

IS - 1

M1 - 119

ER -