Abstract
Original language | English |
---|---|
Pages (from-to) | 2226-2236 |
Number of pages | 11 |
Journal | Am. J. Pathol. |
Volume | 190 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- leptin
- low density lipoprotein
- proprotein convertase 9
- resistin
- STAT3 protein
- LEP protein, human
- PCSK9 protein, human
- RETN protein, human
- STAT3 protein, human
- adult
- Article
- body mass
- cohort analysis
- controlled study
- enzyme activation
- evaluation study
- female
- gene expression regulation
- gene knockdown
- gene silencing
- Hep-G2 cell line
- human
- human cell
- human tissue
- inflammation
- lipoprotein metabolism
- male
- middle aged
- PCSK9 gene
- priority journal
- promoter region
- protein expression
- protein motif
- protein phosphorylation
- signal transduction
- upregulation
- atherosclerosis
- biosynthesis
- DNA responsive element
- genetics
- metabolism
- obesity
- pathology
- Atherosclerosis
- Gene Expression Regulation, Enzymologic
- Hep G2 Cells
- Humans
- Leptin
- Obesity
- Proprotein Convertase 9
- Resistin
- Response Elements
- STAT3 Transcription Factor
- Up-Regulation
Fingerprint
Dive into the research topics of 'Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9: The Role of STAT3: American Journal of Pathology'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9: The Role of STAT3 : American Journal of Pathology. / Macchi, C.; Greco, M.F.; Botta, M. et al.
In: Am. J. Pathol., Vol. 190, No. 11, 2020, p. 2226-2236.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9: The Role of STAT3
T2 - American Journal of Pathology
AU - Macchi, C.
AU - Greco, M.F.
AU - Botta, M.
AU - Sperandeo, P.
AU - Dongiovanni, P.
AU - Valenti, L.
AU - Cicero, A.F.G.
AU - Borghi, C.
AU - Lupo, M.G.
AU - Romeo, S.
AU - Corsini, A.
AU - Magni, P.
AU - Ferri, N.
AU - Ruscica, M.
N1 - Cited By :2 Export Date: 5 March 2021 CODEN: AJPAA Correspondence Address: Macchi, C.; Dipartimento di Scienze Farmacologiche e Biomolecolari, email: chiara.macchi@unimi.it Chemicals/CAS: proprotein convertase 9; serine protease HTRA1; serine proteinase; LEP protein, human; Leptin; PCSK9 protein, human; Proprotein Convertase 9; Resistin; RETN protein, human; STAT3 protein, human; STAT3 Transcription Factor Funding details: Amgen Funding details: Pfizer Funding details: AstraZeneca Funding details: Sanofi Funding details: Gilead Sciences Funding details: Ionis Pharmaceuticals Funding details: European Commission, EC, 777377 Funding details: Fondazione Cariplo, 2015-0552, 2018-0511 Funding details: Agenzia Italiana del Farmaco, Ministero della Salute, AIFA, RF-2016-02364358 Funding details: Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR Funding details: Novo Nordisk Funding details: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Funding text 1: Supported by Cariplo Foundation grants 2015-0552 and 2018-0511 (M.R.), a MIUR Progetto Eccellenza grant (A.C.), Ricerca Finalizzata Ministero della Salute grant RF-2016-02364358 (L.V.) , a Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico grant (L.V.), and European Union (EU) Programme Horizon 2020 grant agreement 777377 ) for the project LITMUS “Liver Investigation: Testing Marker Utility in Steatohepatitis” (L.V.). Funding text 2: Disclosures: S.R. has been a consultant for, and received lecture fees and research grants from Amgen, Sanofi, and AstraZeneca; A.C. has received honoraria from AstraZeneca, Amgen, Sanofi, Recordati, Novartis, MSD, Mediolanum, DOC, Mylan, and Pfizer; L.V. has been a consultant for Gilead, Pfizer, AstraZeneca, Novo Nordisk, Intercept Pharmaceuticals, Diatech Pharmacogenetics, and IONIS. References: Perez-Tilve, D., 'Et tu, leptin?' (2019) Trends Endocrinol Metab, 30, pp. 232-233; Barale, C., Russo, I., Influence of cardiometabolic risk factors on platelet function (2020) Int J Mol Sci, 21, p. 623; Ades, P.A., Savage, P.D., Obesity in coronary heart disease: an unaddressed behavioral risk factor (2017) Prev Med, 104, pp. 117-119; Rashid, S., Kastelein, J.J., PCSK9 and resistin at the crossroads of the atherogenic dyslipidemia (2013) Expert Rev Cardiovasc Ther, 11, pp. 1567-1577; Du, Y., Li, S., Cui, C.-J., Zhang, Y., Yang, S.-H., Li, J.-J., Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: linking dyslipidemia with obesity (2016) J Transl Med, 14, p. 276; Cui, H., Lopez, M., Rahmouni, K., The cellular and molecular bases of leptin and ghrelin resistance in obesity (2017) Nat Rev Endocrinol, 13, pp. 338-351; Banks, A.S., Davis, S.M., Bates, S.H., Myers, M.G., Jr., Activation of downstream signals by the long form of the leptin receptor (2000) J Biol Chem, 275, pp. 14563-14572; Gao, Q., Wolfgang, M.J., Neschen, S., Morino, K., Horvath, T.L., Shulman, G.I., Fu, X.-Y., Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation (2004) Proc Natl Acad Sci U S A, 101, pp. 4661-4666; Bates, S.H., Stearns, W.H., Dundon, T.A., Schubert, M., Tso, A.W., Wang, Y., Banks, A.S., Myers, M.G., Jr., STAT3 signalling is required for leptin regulation of energy balance but not reproduction (2003) Nature, 421, pp. 856-859; Reilly, M.P., Lehrke, M., Wolfe, M.L., Rohatgi, A., Lazar, M.A., Rader, D.J., Resistin is an inflammatory marker of atherosclerosis in humans (2005) Circulation, 111, pp. 932-939; Lee, S., Lee, H.-C., Kwon, Y.-W., Lee, S.E., Cho, Y., Kim, J., Lee, S., Kim, H.-S., Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes (2014) Cell Metab, 19, pp. 484-497; Macchi, C., Banach, M., Corsini, A., Sirtori, C.R., Ferri, N., Ruscica, M., Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents (2019) Eur J Prev Cardiol, 26, pp. 930-949; Momtazi-Borojeni, A.A., Sabouri-Rad, S., Gotto, A.M., Pirro, M., Banach, M., Awan, Z., Barreto, G.E., Sahebkar, A., PCSK9 and inflammation: a review of experimental and clinical evidence (2019) Eur Heart J Cardiovasc Pharmacother, 5, pp. 237-245; Ruscica, M., Baragetti, A., Catapano, A.L., Norata, G.D., Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: gaps and open questions (2017) Nutr Metab Cardiovasc Dis, 27, pp. 379-395; Dodington, D.W., Desai, H.R., Woo, M., JAK/STAT - emerging players in metabolism (2018) Trends Endocrinol Metab, 29, pp. 55-65; Camera, M., Rossetti, L., Barbieri, S.S., Zanotti, I., Canciani, B., Trabattoni, D., Ruscica, M., Ferri, N., PCSK9 as a positive modulator of platelet activation (2018) J Am Coll Cardiol, 71, pp. 952-954; Yates, A.D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J., Ensembl 2020 (2020) Nucleic Acids Res, 48, pp. D682-D688; Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Mathelier, A., JASPAR 2020: update of the open-access database of transcription factor binding profiles (2020) Nucleic Acids Res, 48, pp. D87-D92; Grant, C.E., Bailey, T.L., Noble, W.S., FIMO: scanning for occurrences of a given motif (2011) Bioinformatics, 27, pp. 1017-1018; Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Noble, W.S., MEME SUITE: tools for motif discovery and searching (2009) Nucleic Acids Res, 37, pp. W202-W208; Li, H., Dong, B., Park, S.W., Lee, H.-S., Chen, W., Liu, J., Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine (2009) J Biol Chem, 284, pp. 28885-28895; Ruscica, M., Ferri, N., Fogacci, F., Rosticci, M., Botta, M., Marchiano, S., Magni, P., Cicero, A.F.G., Circulating levels of proprotein convertase subtilisin/kexin type 9 and arterial stiffness in a large population sample: data from the Brisighella Heart Study (2017) J Am Heart Assoc, 6, p. e005764; Ruscica, M., Simonelli, S., Botta, M., Ossoli, A., Lupo, M.G., Magni, P., Corsini, A., Calabresi, L., Plasma PCSK9 levels and lipoprotein distribution are preserved in carriers of genetic HDL disorders (2018) Biochim Biophys Acta Mol Cell Biol Lipids, 1863, pp. 991-997; Ruscica, M., Macchi, C., Gandini, S., Morlotti, B., Erzegovesi, S., Bellodi, L., Magni, P., Free and bound plasma leptin in anorexia nervosa patients during a refeeding program (2016) Endocrine, 51, pp. 380-383; Tripathi, S.K., Chen, Z., Larjo, A., Kanduri, K., Nousiainen, K., Aijo, T., Ricano-Ponce, I., Lahesmaa, R., Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation (2017) Cell Rep, 19, pp. 1888-1901; Ruscica, M., Ricci, C., Macchi, C., Magni, P., Cristofani, R., Liu, J., Corsini, A., Ferri, N., Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line (2016) J Biol Chem, 291, pp. 3508-3519; Neeland, I.J., Ross, R., Despres, J.P., Matsuzawa, Y., Yamashita, S., Shai, I., Seidell, J., Eckel, R.H., Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement (2019) Lancet Diabetes Endocrinol, 7, pp. 715-725; Melone, M., Wilsie, L., Palyha, O., Strack, A., Rashid, S., Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9 (2012) J Am Coll Cardiol, 59, pp. 1697-1705; Sun, L., Yang, X., Li, Q., Zeng, P., Liu, Y., Liu, L., Chen, Y., Duan, Y., Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in ApoE-deficient mice (2017) Arterioscler Thromb Vasc Biol, 37, pp. 1290-1300; Ruscica, M., Tokgozoglu, L., Corsini, A., Sirtori, C.R., PCSK9 inhibition and inflammation: a narrative review (2019) Atherosclerosis, 288, pp. 146-155; Emanuelli, B., Peraldi, P., Filloux, C., Chavey, C., Freidinger, K., Hilton, D.J., Hotamisligil, G.S., Van Obberghen, E., SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice (2001) J Biol Chem, 276, pp. 47944-47949; Ueki, K., Kondo, T., Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms (2004) Mol Cell Biol, 24, pp. 5434-5446; Allison, M.B., Myers, M.G., Jr., 20 years of leptin: connecting leptin signaling to biological function (2014) J Endocrinol, 223, pp. T25-T35; Pirvulescu, M., Manduteanu, I., Gan, A.M., Stan, D., Simion, V., Butoi, E., Calin, M., Simionescu, M., A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: up-regulation of SOCS3 expression through STAT3 activation (2012) Biochem Biophys Res Commun, 422, pp. 321-326; Mashili, F., Chibalin, A.V., Krook, A., Zierath, J.R., Constitutive STAT3 phosphorylation contributes to skeletal muscle insulin resistance in type 2 diabetes (2013) Diabetes, 62, pp. 457-465; Bode, J.G., Albrecht, U., Haussinger, D., Heinrich, P.C., Schaper, F., Hepatic acute phase proteins–regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kappaB-dependent signaling (2012) Eur J Cell Biol, 91, pp. 496-505; Zhang, X., Li, J., Qin, J.-J., Cheng, W.-L., Zhu, X., Gong, F.-H., She, Z., Li, H., Oncostatin M receptor beta deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages (2017) J Lipid Res, 58, pp. 895-906; Dutzmann, J., Daniel, J.M., Bauersachs, J., Hilfiker-Kleiner, D., Sedding, D.G., Emerging translational approaches to target STAT3 signalling and its impact on vascular disease (2015) Cardiovasc Res, 106, pp. 365-374; Cohen, J.C., Boerwinkle, E., Mosley, T.H., Jr., Hobbs, H.H., Sequence variations in PCSK9, low LDL, and protection against coronary heart disease (2006) N Engl J Med, 354, pp. 1264-1272; Ferri, N., Marchiano, S., Tibolla, G., Baetta, R., Dhyani, A., Ruscica, M., Uboldi, P., Corsini, A., PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement (2016) Atherosclerosis, 253, pp. 214-224; Dong, B., Singh, A.B., Shende, V.R., Liu, J., Hepatic HNF1 transcription factors control the induction of PCSK9 mediated by rosuvastatin in normolipidemic hamsters (2017) Int J Mol Med, 39, pp. 749-756; Jeong, H.J., Lee, H.-S., Kim, K.-S., Kim, Y.-K., Yoon, D., Park, S.W., Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2 (2008) J Lipid Res, 49, pp. 399-409; Ruiz-Cortes, Z.T., Martel-Kennes, Y., Gevry, N.Y., Downey, B.R., Palin, M.F., Murphy, B.D., Biphasic effects of leptin in porcine granulosa cells (2003) Biol Reprod, 68, pp. 789-796; Kwakernaak, A.J., Lambert, G., Dullaart, R.P., Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins (2014) Clin Biochem, 47, pp. 679-682; Lakoski, S.G., Lagace, T.A., Cohen, J.C., Horton, J.D., Hobbs, H.H., Genetic and metabolic determinants of plasma PCSK9 levels (2009) J Clin Endocrinol Metab, 94, pp. 2537-2543; Ooi, T.C., Raymond, A., Cousins, M., Favreau, C., Taljaard, M., Gavin, C., Jolly, E.E., Mayne, J., Relationship between testosterone, estradiol and circulating PCSK9: cross-sectional and interventional studies in humans (2015) Clin Chim Acta, 446, pp. 97-104; Macchi, C., Ferri, N., Favero, C., Cantone, L., Vigna, L., Pesatori, A.C., Lupo, M.G., Ruscica, M., Long-term exposure to air pollution raises circulating levels of proprotein convertase subtilisin/kexin type 9 in obese individuals (2019) Eur J Prev Cardiol, 26, pp. 578-588; Munzberg, H., Myers, M.G., Jr., Molecular and anatomical determinants of central leptin resistance (2005) Nat Neurosci, 8, pp. 566-570; Crujeiras, A.B., Carreira, M.C., Cabia, B., Andrade, S., Amil, M., Casanueva, F.F., Leptin resistance in obesity: an epigenetic landscape (2015) Life Sci, 140, pp. 57-63; Levenson, A.E., Haas, M.E., Miao, J., Brown, R.J., de Ferranti, S.D., Muniyappa, R., Biddinger, S.B., Effect of leptin replacement on PCSK9 in ob/ob mice and female lipodystrophic patients (2016) Endocrinology, 157, pp. 1421-1429; Li, S., Xu, R.X., Zhang, Y., Guo, Y.L., Zhu, C.G., Liu, G., Dong, Q., Li, J.J., Relation of resistin to proprotein convertase subtilisin-kexin type 9 levels in coronary artery disease patients with different nutritional status (2015) J Endocrinol Invest, 38, pp. 1291-1299; Jang, H.-D., Lee, S.E., Yang, J., Lee, H.-C., Shin, D., Lee, H., Lee, J., Kim, H.-S., Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9 (2020) Eur Heart J, 41, pp. 239-252; Ricci, C., Ruscica, M., Camera, M., Rossetti, L., Macchi, C., Colciago, A., Zanotti, I., Ferri, N., PCSK9 induces a pro-inflammatory response in macrophages (2018) Sci Rep, 8, p. 2267; Heinzl, M.W., Resl, M., Klammer, C., Egger, M., Dieplinger, B., Clodi, M., Proprotein convertase subtilisin/kexin type 9 (PCSK9) is not induced in artificial human inflammation and is not correlated with inflammatory response (2020) Infect Immun, 88, p. e00842-19
PY - 2020
Y1 - 2020
N2 - In a condition of dysfunctional visceral fat depots, as in the case of obesity, alterations in adipokine levels may be detrimental for the cardiovascular system. The proinflammatory leptin and resistin adipokines have been described as possible links between obesity and atherosclerosis. The present study was aimed at evaluating whether proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low-density lipoprotein metabolism, is induced by leptin and resistin through the involvement of the inflammatory pathway of STAT3. In HepG2 cells, leptin and resistin up-regulated PCSK9 gene and protein expression, as well as the phosphorylation of STAT3. Upon STAT3 silencing, leptin and resistin lost their ability to activate PCSK9. The knockdown of STAT3 did not affect the expression of leptin and resistin receptors or that of PCSK9. The analysis of the human PCSK9 promoter region showed that the two adipokines raised PCSK9 promoter activity via the involvement of a sterol regulatory element motif. In healthy males, a positive association between circulating leptin and PCSK9 levels was found only when the body mass index was <25 kg/m2. In conclusion, this study identified STAT3 as one of the molecular regulators of leptin- and resistin-mediated transcriptional induction of PCSK9. © 2020 American Society for Investigative Pathology
AB - In a condition of dysfunctional visceral fat depots, as in the case of obesity, alterations in adipokine levels may be detrimental for the cardiovascular system. The proinflammatory leptin and resistin adipokines have been described as possible links between obesity and atherosclerosis. The present study was aimed at evaluating whether proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low-density lipoprotein metabolism, is induced by leptin and resistin through the involvement of the inflammatory pathway of STAT3. In HepG2 cells, leptin and resistin up-regulated PCSK9 gene and protein expression, as well as the phosphorylation of STAT3. Upon STAT3 silencing, leptin and resistin lost their ability to activate PCSK9. The knockdown of STAT3 did not affect the expression of leptin and resistin receptors or that of PCSK9. The analysis of the human PCSK9 promoter region showed that the two adipokines raised PCSK9 promoter activity via the involvement of a sterol regulatory element motif. In healthy males, a positive association between circulating leptin and PCSK9 levels was found only when the body mass index was <25 kg/m2. In conclusion, this study identified STAT3 as one of the molecular regulators of leptin- and resistin-mediated transcriptional induction of PCSK9. © 2020 American Society for Investigative Pathology
KW - leptin
KW - low density lipoprotein
KW - proprotein convertase 9
KW - resistin
KW - STAT3 protein
KW - LEP protein, human
KW - PCSK9 protein, human
KW - RETN protein, human
KW - STAT3 protein, human
KW - adult
KW - Article
KW - body mass
KW - cohort analysis
KW - controlled study
KW - enzyme activation
KW - evaluation study
KW - female
KW - gene expression regulation
KW - gene knockdown
KW - gene silencing
KW - Hep-G2 cell line
KW - human
KW - human cell
KW - human tissue
KW - inflammation
KW - lipoprotein metabolism
KW - male
KW - middle aged
KW - PCSK9 gene
KW - priority journal
KW - promoter region
KW - protein expression
KW - protein motif
KW - protein phosphorylation
KW - signal transduction
KW - upregulation
KW - atherosclerosis
KW - biosynthesis
KW - DNA responsive element
KW - genetics
KW - metabolism
KW - obesity
KW - pathology
KW - Atherosclerosis
KW - Gene Expression Regulation, Enzymologic
KW - Hep G2 Cells
KW - Humans
KW - Leptin
KW - Obesity
KW - Proprotein Convertase 9
KW - Resistin
KW - Response Elements
KW - STAT3 Transcription Factor
KW - Up-Regulation
U2 - 10.1016/j.ajpath.2020.07.016
DO - 10.1016/j.ajpath.2020.07.016
M3 - Article
VL - 190
SP - 2226
EP - 2236
JO - Am. J. Pathol.
JF - Am. J. Pathol.
SN - 0002-9440
IS - 11
ER -