Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes

Reid C. Van Lehn, Maria Ricci, Paulo H J Silva, Patrizia Andreozzi, Javier Reguera, Kislon Voïtchovsky, Francesco Stellacci, Alfredo Alexander-Katz

Research output: Contribution to journalArticlepeer-review

Abstract

Recent work has demonstrated that charged gold nanoparticles (AuNPs) protected by an amphiphilic organic monolayer can spontaneously insert into the core of lipid bilayers to minimize the exposure of hydrophobic surface area to water. However, the kinetic pathway to reach the thermodynamically stable transmembrane configuration is unknown. Here, we use unbiased atomistic simulations to show the pathway by which AuNPs spontaneously insert into bilayers and confirm the results experimentally on supported lipid bilayers. The critical step during this process is hydrophobic-hydrophobic contact between the core of the bilayer and the monolayer of the AuNP that requires the stochastic protrusion of an aliphatic lipid tail into solution. This last phenomenon is enhanced in the presence of high bilayer curvature and closely resembles the putative pre-stalk transition state for vesicle fusion. To the best of our knowledge, this work provides the first demonstration of vesicle fusion-like behaviour in an amphiphilic nanoparticle system.

Original languageEnglish
Article number4482
JournalNature Communications
Volume5
DOIs
Publication statusPublished - Jul 21 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes'. Together they form a unique fingerprint.

Cite this