Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology

Federica Frigerio, Angelisa Frasca, Itai Weissberg, Sara Parrella, Alon Friedman, Annamaria Vezzani, Francesco M. Noe'

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Purpose: Dysfunction of the blood-brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)-induced seizures, and their hippocampal afterdischarge threshold (ADT). Methods: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)-albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC-albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)-1β. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. Key Findings: The hippocampal serum albumin concentration 24 h post-SE was 0.76 ± 0.21 μm. Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 μg/4 μl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)-positive cells, but not in glial fibrillary acidic protein (GFAP)-positive astrocytes or CR-3 complement receptor (OX-42)-positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL-1β in GFAP-positive astrocytes and a concomitant tissue down-regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50% but no spontaneous seizures were observed. Significance: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long-term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin-induced astrocytes dysfunction and the associated induction of proinflammatory molecules.

Original languageEnglish
Pages (from-to)1887-1897
Number of pages11
JournalEpilepsia
Volume53
Issue number11
DOIs
Publication statusPublished - Nov 2012

Fingerprint

Serum Albumin
Albumins
Pathology
Brain
Seizures
Hippocampus
Status Epilepticus
Astrocytes
Injections
Electroencephalography
Kainic Acid
Blood-Brain Barrier
Glial Fibrillary Acidic Protein
Prosencephalon
Dextrans
Fluorescein
Interleukin-1
Western Blotting
Immunohistochemistry
Macrophage-1 Antigen

Keywords

  • Afterdischarge
  • Astrocytes
  • Blood-brain barrier
  • Inflammation
  • Neurodegeneration
  • Seizures

ASJC Scopus subject areas

  • Clinical Neurology
  • Neurology

Cite this

Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. / Frigerio, Federica; Frasca, Angelisa; Weissberg, Itai; Parrella, Sara; Friedman, Alon; Vezzani, Annamaria; Noe', Francesco M.

In: Epilepsia, Vol. 53, No. 11, 11.2012, p. 1887-1897.

Research output: Contribution to journalArticle

Frigerio, Federica ; Frasca, Angelisa ; Weissberg, Itai ; Parrella, Sara ; Friedman, Alon ; Vezzani, Annamaria ; Noe', Francesco M. / Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. In: Epilepsia. 2012 ; Vol. 53, No. 11. pp. 1887-1897.
@article{1ebf3485ee9e4c019915aac0a4e51491,
title = "Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology",
abstract = "Purpose: Dysfunction of the blood-brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)-induced seizures, and their hippocampal afterdischarge threshold (ADT). Methods: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)-albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC-albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)-1β. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. Key Findings: The hippocampal serum albumin concentration 24 h post-SE was 0.76 ± 0.21 μm. Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 μg/4 μl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)-positive cells, but not in glial fibrillary acidic protein (GFAP)-positive astrocytes or CR-3 complement receptor (OX-42)-positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL-1β in GFAP-positive astrocytes and a concomitant tissue down-regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50{\%} but no spontaneous seizures were observed. Significance: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long-term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin-induced astrocytes dysfunction and the associated induction of proinflammatory molecules.",
keywords = "Afterdischarge, Astrocytes, Blood-brain barrier, Inflammation, Neurodegeneration, Seizures",
author = "Federica Frigerio and Angelisa Frasca and Itai Weissberg and Sara Parrella and Alon Friedman and Annamaria Vezzani and Noe', {Francesco M.}",
year = "2012",
month = "11",
doi = "10.1111/j.1528-1167.2012.03666.x",
language = "English",
volume = "53",
pages = "1887--1897",
journal = "Epilepsia",
issn = "0013-9580",
publisher = "Blackwell Publishing Inc.",
number = "11",

}

TY - JOUR

T1 - Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology

AU - Frigerio, Federica

AU - Frasca, Angelisa

AU - Weissberg, Itai

AU - Parrella, Sara

AU - Friedman, Alon

AU - Vezzani, Annamaria

AU - Noe', Francesco M.

PY - 2012/11

Y1 - 2012/11

N2 - Purpose: Dysfunction of the blood-brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)-induced seizures, and their hippocampal afterdischarge threshold (ADT). Methods: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)-albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC-albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)-1β. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. Key Findings: The hippocampal serum albumin concentration 24 h post-SE was 0.76 ± 0.21 μm. Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 μg/4 μl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)-positive cells, but not in glial fibrillary acidic protein (GFAP)-positive astrocytes or CR-3 complement receptor (OX-42)-positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL-1β in GFAP-positive astrocytes and a concomitant tissue down-regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50% but no spontaneous seizures were observed. Significance: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long-term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin-induced astrocytes dysfunction and the associated induction of proinflammatory molecules.

AB - Purpose: Dysfunction of the blood-brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)-induced seizures, and their hippocampal afterdischarge threshold (ADT). Methods: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)-albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC-albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)-1β. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. Key Findings: The hippocampal serum albumin concentration 24 h post-SE was 0.76 ± 0.21 μm. Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 μg/4 μl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)-positive cells, but not in glial fibrillary acidic protein (GFAP)-positive astrocytes or CR-3 complement receptor (OX-42)-positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL-1β in GFAP-positive astrocytes and a concomitant tissue down-regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50% but no spontaneous seizures were observed. Significance: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long-term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin-induced astrocytes dysfunction and the associated induction of proinflammatory molecules.

KW - Afterdischarge

KW - Astrocytes

KW - Blood-brain barrier

KW - Inflammation

KW - Neurodegeneration

KW - Seizures

UR - http://www.scopus.com/inward/record.url?scp=84869045258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84869045258&partnerID=8YFLogxK

U2 - 10.1111/j.1528-1167.2012.03666.x

DO - 10.1111/j.1528-1167.2012.03666.x

M3 - Article

C2 - 22984896

AN - SCOPUS:84869045258

VL - 53

SP - 1887

EP - 1897

JO - Epilepsia

JF - Epilepsia

SN - 0013-9580

IS - 11

ER -