Long term exposure to polyphenols of artichoke (cynara scolymus L.) Exerts induction of senescence driven growth arrest in the MDA-MB231 human breast cancer cell line

Anna Maria Mileo, Donato Di Venere, Claudia Abbruzzese, Stefania Miccadei

Research output: Contribution to journalArticlepeer-review

Abstract

Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-Associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16INK4a and p21Cip1/Waf1 in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-Acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.

Original languageEnglish
Article number363827
JournalOxidative Medicine and Cellular Longevity
Volume2015
DOIs
Publication statusPublished - 2015

ASJC Scopus subject areas

  • Cell Biology
  • Ageing
  • Biochemistry

Fingerprint Dive into the research topics of 'Long term exposure to polyphenols of artichoke (cynara scolymus L.) Exerts induction of senescence driven growth arrest in the MDA-MB231 human breast cancer cell line'. Together they form a unique fingerprint.

Cite this