Loss of Spry1 reduces growth of BRAFV600-mutant cutaneous melanoma and improves response to targeted therapy

Barbara Montico, Francesca Colizzi, Giorgio Giurato, Aurora Rizzo, Annamaria Salvati, Lorena Baboci, Dania Benedetti, Eliana Pivetta, Alessia Covre, Michele Dal Bo, Alessandro Weisz, Agostino Steffan, Michele Maio, Luca Sigalotti, Elisabetta Fratta

Research output: Contribution to journalArticlepeer-review

Abstract

Mitogen-activated protein kinase (MAPK) pathway activation is a central step in BRAFV600-mutant cutaneous melanoma (CM) pathogenesis. In the last years, Spry1 has been frequently described as an upstream regulator of MAPK signaling pathway. However, its specific role in BRAFV600-mutant CM is still poorly defined. Here, we report that Spry1 knockdown (Spry1KO) in three BRAFV600-mutant CM cell lines markedly induced cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and impaired tumor growth in vivo. Furthermore, our findings indicated that Spry1KO reduced the expression of several markers of epithelial–mesenchymal transition, such as MMP-2 both in vitro and in vivo. These effects were associated with a sustained and deleterious phosphorylation of ERK1/2. In addition, p38 activation along with an increase in basal ROS levels were found in Spry1KO clones compared to parental CM cell lines, suggesting that BRAFV600-mutant CM may restrain the activity of Spry1 to avoid oncogenic stress and to enable tumor growth. Consistent with this hypothesis, treatment with the BRAF inhibitor (BRAFi) vemurafenib down-regulated Spry1 levels in parental CM cell lines, indicating that Spry1 expression is sustained by the MAPK/ERK signaling pathway in a positive feedback loop that safeguards cells from the potentially toxic effects of ERK1/2 hyperactivation. Disruption of this feedback loop rendered Spry1KO cells more susceptible to apoptosis and markedly improved response to BRAFi both in vitro and in vivo, as a consequence of the detrimental effect of ERK1/2 hyperactivation observed upon Spry1 abrogation. Therefore, targeting Spry1 might offer a treatment strategy for BRAFV600-mutant CM by inducing the toxic effects of ERK-mediated signaling.

Original languageEnglish
Article number392
JournalCell Death and Disease
Volume11
Issue number5
DOIs
Publication statusPublished - May 1 2020

ASJC Scopus subject areas

  • Immunology
  • Cellular and Molecular Neuroscience
  • Cell Biology
  • Cancer Research

Fingerprint Dive into the research topics of 'Loss of Spry1 reduces growth of BRAF<sup>V600</sup>-mutant cutaneous melanoma and improves response to targeted therapy'. Together they form a unique fingerprint.

Cite this