TY - GEN
T1 - Lower-limb amputees can reduce the energy cost of walking when assisted by an Active Pelvis Orthosis
AU - Martini, E.
AU - Sanz-Morere, C. B.
AU - Livolsi, C.
AU - Pergolini, A.
AU - Arnetoli, G.
AU - Doronzio, S.
AU - Giffone, A.
AU - Conti, R.
AU - Giovacchini, F.
AU - Frieriksson, P.
AU - Lechler, K.
AU - Crea, S.
AU - Vitiello, N.
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11
Y1 - 2020/11
N2 - Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations.
AB - Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations.
UR - http://www.scopus.com/inward/record.url?scp=85095580734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095580734&partnerID=8YFLogxK
U2 - 10.1109/BioRob49111.2020.9224417
DO - 10.1109/BioRob49111.2020.9224417
M3 - Conference contribution
AN - SCOPUS:85095580734
T3 - Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
SP - 809
EP - 815
BT - 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
PB - IEEE Computer Society
T2 - 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
Y2 - 29 November 2020 through 1 December 2020
ER -