TY - JOUR
T1 - Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex
AU - Maltempo, Teresa
AU - Pitzalis, Sabrina
AU - Bellagamba, Martina
AU - Di Marco, Sara
AU - Fattori, Patrizia
AU - Galati, Gaspare
AU - Galletti, Claudio
AU - Sulpizio, Valentina
N1 - Funding Information:
Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-CARE Agreement.. University of Foro Italico (CDR2.FFABR) to SP, Italian Ministry of Education, University and Research Grants to CG (PRIN 2015AWSW2Y) and PF (PRIN 2017KZNZLN).
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021
Y1 - 2021
N2 - Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
AB - Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
KW - Functional magnetic resonance
KW - HPEc
KW - Pointing
KW - Superior parietal lobule
KW - Visuomotor control
UR - http://www.scopus.com/inward/record.url?scp=85103000383&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103000383&partnerID=8YFLogxK
U2 - 10.1007/s00429-021-02254-3
DO - 10.1007/s00429-021-02254-3
M3 - Article
AN - SCOPUS:85103000383
JO - Zeitschrift fur Anatomie und Entwicklungsgeschichte
JF - Zeitschrift fur Anatomie und Entwicklungsgeschichte
SN - 0177-5154
ER -