Machine learning approaches: From theory to application in schizophrenia

Elisa Veronese, Umberto Castellani, Denis Peruzzo, Marcella Bellani, Paolo Brambilla

Research output: Contribution to journalArticle

Abstract

In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.

Original languageEnglish
Article number867924
JournalComputational and Mathematical Methods in Medicine
Volume2013
DOIs
Publication statusPublished - 2013

ASJC Scopus subject areas

  • Applied Mathematics
  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Machine learning approaches: From theory to application in schizophrenia'. Together they form a unique fingerprint.

  • Cite this