TY - JOUR
T1 - Macrophages guard endothelial lineage by hindering endothelial-to-mesenchymal transition
T2 - Implications for the pathogenesis of systemic sclerosis
AU - Nicolosi, Pier Andrea
AU - Tombetti, Enrico
AU - Giovenzana, Anna
AU - Done, Eleonora
AU - Pulcinelli, Eleonora
AU - Meneveri, Raffaella
AU - Tirone, Mario
AU - Maugeri, Norma
AU - Rovere-Querini, Patrizia
AU - Manfredi, Angelo A.
AU - Brunelli, Silvia
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The signals that control endothelial plasticity in inflamed tissues have only been partially characterized. For example, it has been shown that inadequate vasculogenesis in systemic sclerosis (SSc) has been associated with an endothelial defect. We used a genetic lineage tracing model to investigate whether endothelial cells die or change phenotypically after fibrosis induction and whether signals released by cells of the innate immune system and in the blood of patients influence their commitment. We observed that in the lineage-tracing transgenic mice Cdh5-CreERT2::R26R-EYFP, endothelial-derived cells (EdCs) underwent fibrosis after treatment with bleomycin, and EdCs retrieved from the lung showed expression of endothelial-to-mesenchymal transition (EndoMT) markers. Liposome-encapsulated clodronate was used to assess macrophage impact on EdCs. Clodronate treatment affected the number of alternatively activated macrophages in the lung, with upregulated expression of EndoMT markers in lung EdCs. Endothelial fate and function were investigated in vitro upon challenge with serum signals from SSc patients or released by activated macrophages. Sera of SSc patients with anti-Scl70 Abs, at higher risk of visceral organ fibrosis, induced EndoMT and jeopardized endothelial function. In conclusion, EdCs in SSc might be defective because of commitment to a mesenchymal fate, which is sustained by soluble signals in the patient's blood. Macrophages contribute to preserve the endothelial identity of precursor cells. Altered macrophage-dependent plasticity of EdCs could contribute to link vasculopathy with fibrosis.
AB - The signals that control endothelial plasticity in inflamed tissues have only been partially characterized. For example, it has been shown that inadequate vasculogenesis in systemic sclerosis (SSc) has been associated with an endothelial defect. We used a genetic lineage tracing model to investigate whether endothelial cells die or change phenotypically after fibrosis induction and whether signals released by cells of the innate immune system and in the blood of patients influence their commitment. We observed that in the lineage-tracing transgenic mice Cdh5-CreERT2::R26R-EYFP, endothelial-derived cells (EdCs) underwent fibrosis after treatment with bleomycin, and EdCs retrieved from the lung showed expression of endothelial-to-mesenchymal transition (EndoMT) markers. Liposome-encapsulated clodronate was used to assess macrophage impact on EdCs. Clodronate treatment affected the number of alternatively activated macrophages in the lung, with upregulated expression of EndoMT markers in lung EdCs. Endothelial fate and function were investigated in vitro upon challenge with serum signals from SSc patients or released by activated macrophages. Sera of SSc patients with anti-Scl70 Abs, at higher risk of visceral organ fibrosis, induced EndoMT and jeopardized endothelial function. In conclusion, EdCs in SSc might be defective because of commitment to a mesenchymal fate, which is sustained by soluble signals in the patient's blood. Macrophages contribute to preserve the endothelial identity of precursor cells. Altered macrophage-dependent plasticity of EdCs could contribute to link vasculopathy with fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=85068427418&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068427418&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1800883
DO - 10.4049/jimmunol.1800883
M3 - Article
C2 - 31127033
AN - SCOPUS:85068427418
VL - 203
SP - 247
EP - 258
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 1
ER -