Measuring age-related differences in kinematic postural strategies under yaw perturbation

Ilaria Mileti, Juri Taborri, Stefano Rossi, Zaccaria Del Prete, Marco Paoloni, Antonio Suppa, Eduardo Palermo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The assessment of age-related postural strategies under external perturbation is of great interest for a better evaluation of the risk of falls in healthy humans. In the large majority of the studies, subjects have been perturbed with antero/posterior translations or rotations in the pitch and roll angles in order to investigate the postural strategies adopted for balance control. However, physiological mechanisms involved in the response to continuous yaw perturbation to maintain stable balance in healthy subjects are still unclear. Ten younger subjects (age: 28±3 years) and ten older adults (age: 61±4 years) were asked to stand on the RotoBiT1D under two visual conditions: (a) eyes opened looking at a fixation point, and (b) eyes closed. The platform, driven by an ad-hoc control software, provided two sinusoidal rotations on the horizontal plane with fixed amplitude (±55°) and two different frequencies (0.2 Hz and 0.3 Hz). Kinematics of head, trunk, pelvis, arms, forearms, thighs and shanks body-segments was gathered using eleven inertial measurement units. Body-segment absolute rotations in the transverse plane were compared to platform absolute rotation after fast Fourier transform. The gain (G) and phase lag (φ) of all body-segments were computed and analyzed as a function of age, visual and frequency conditions. G values were statistically lower in older subjects than in younger subjects for all body-segments attesting prominent stiffness and limited ranges of movement. Regarding φ, our results demonstrated that in older subjects, lower limbs, trunk and pelvis anticipated platform movement probably compensating for postural perturbations. In both groups, G decreased and φ delayed progressively by increasing the frequency of the perturbation while similar results were obtained comparing the two visual conditions. In conclusion, to maintain balance under sinusoidal yaw perturbation, older subjects adopted a different motor control strategy compared with younger subjects mainly implying reduced body-movements and the anticipation of the movement.

Original languageEnglish
Title of host publicationMeMeA 2018 - 2018 IEEE International Symposium on Medical Measurements and Applications, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781538633915
DOIs
Publication statusPublished - Aug 16 2018
Event13th IEEE International Symposium on Medical Measurements and Applications, MeMeA 2018 - Rome, Italy
Duration: Jun 11 2018Jun 13 2018

Conference

Conference13th IEEE International Symposium on Medical Measurements and Applications, MeMeA 2018
CountryItaly
CityRome
Period6/11/186/13/18

Keywords

  • Aging
  • Dynamic posturography
  • Kinematics
  • Postural stability
  • Yaw perturbation

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics
  • Instrumentation

Fingerprint Dive into the research topics of 'Measuring age-related differences in kinematic postural strategies under yaw perturbation'. Together they form a unique fingerprint.

  • Cite this

    Mileti, I., Taborri, J., Rossi, S., Del Prete, Z., Paoloni, M., Suppa, A., & Palermo, E. (2018). Measuring age-related differences in kinematic postural strategies under yaw perturbation. In MeMeA 2018 - 2018 IEEE International Symposium on Medical Measurements and Applications, Proceedings [8438804] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/MeMeA.2018.8438804