Melanoma cells homing to the brain: An in vitro model

A. Rizzo, C. Vasco, V. Girgenti, V. Fugnanesi, C. Calatozzolo, A. Canazza, A. Salmaggi, L. Rivoltini, M. Morbin, E. Ciusani

Research output: Contribution to journalArticle

Abstract

We developed an in vitro contact through-feet blood brain barrier (BBB) model built using type IV collagen, rat astrocytes, and human umbilical vein endothelial cells (HUVECs) cocultured through Transwell porous polycarbonate membrane. The contact between astrocytes and HUVECs was demonstrated by electron microscopy: astrocytes endfeet pass through the 8.0 μm pores inducing HUVECs to assume a cerebral phenotype. Using this model we evaluated transmigration of melanoma cells from two different patients (M1 and M2) selected among seven melanoma primary cultures. M2 cells showed a statistically significant higher capability to pass across the in vitro BBB model, compared to M1. Expression of adhesion molecules was evaluated by flow cytometry: a statistically significant increased expression of MCAM, αvβ3, and CD49b was detected in M1. PCR array data showed that M2 had a higher expression of several matrix metalloproteinase proteins (MMPs) compared to M1. Specifically, data suggest that MMP2 and MMP9 could be directly involved in BBB permeability and that brain invasion by melanoma cells could be related to the overexpression of many MMPs. Future studies will be necessary to deepen the mechanisms of central nervous system invasion.

Original languageEnglish
Article number476069
JournalBioMed Research International
Volume2015
DOIs
Publication statusPublished - 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Melanoma cells homing to the brain: An in vitro model'. Together they form a unique fingerprint.

  • Cite this

    Rizzo, A., Vasco, C., Girgenti, V., Fugnanesi, V., Calatozzolo, C., Canazza, A., Salmaggi, A., Rivoltini, L., Morbin, M., & Ciusani, E. (2015). Melanoma cells homing to the brain: An in vitro model. BioMed Research International, 2015, [476069]. https://doi.org/10.1155/2015/476069