Metabolic, neurochemical, and histologic responses to vibrissa motor cortex stimulation after traumatic brain injury

Emily Y. Ip, Elisa Roncati Zanier, Amy H. Moore, Stefan M. Lee, David A. Hovda

Research output: Contribution to journalArticle

Abstract

During the prolonged metabolic depression after traumatic brain injury (TBI), neurons are less able to respond metabolically to peripheral stimulation. Because this decreased responsiveness has been attributed to circuit dysfunction, the present study examined the metabolic, neurochemical, and histologic responses to direct cortical stimulation after lateral fluid percussion injury (LFPI). This study addressed three specific hypotheses: that neurons, if activated after LFPI, will increase their utilization of glucose even during a period of posttraumatic metabolic depression; that this secondary activation results in an increase in the production of lactate and a depletion of extracellular glucose; and that because cells are known to be in a state of energy crisis after traumatic brain injury, additional energy demands resulting from activation can result in their death. The results indicate that stimulating to levels eliciting a vibrissa twitch resulted in an increase in the cerebral metabolic rate for glucose (CMRglc; μmol·100 g-1·min-1) 34% to 61% in the sham-operated, 1-hour LFPI, and 7-day LFPI groups. However, in the 1-day LFPI group, stimulation induced a 161% increase in CMRglc and a 35% decrease in metabolic activation volume. Extracellular lactate concentrations during stimulation significantly increased from 23% in the sham-injured group to 55% to 63% in the 1-day and 7-day LFPI groups. Extracellular glucose concentrations during stimulation remained unchanged in the sham-injured and 7-day LFPI groups, but decreased 17% in the 1-day LFPI group. The extent of cortical degeneration around the stimulating electrode in the 1-day LFPI group nearly doubled when compared with controls. These results indicate that at 1 day after LFPI, the cortex can respond to stimulation with an increase in anaerobic glycolysis; however, this metabolic response to levels eliciting a vibrissa response via direct cortical stimulation appears to constitute a secondary injury in the TBI brain.

Original languageEnglish
Pages (from-to)900-910
Number of pages11
JournalJournal of Cerebral Blood Flow and Metabolism
Volume23
Issue number8
Publication statusPublished - Aug 1 2003

Keywords

  • Cortex
  • Fluid percussion injury
  • Fluorodeoxyglucose autoradiography
  • Microdialysis
  • Stimulation
  • Vibrissa

ASJC Scopus subject areas

  • Endocrinology
  • Neuroscience(all)
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'Metabolic, neurochemical, and histologic responses to vibrissa motor cortex stimulation after traumatic brain injury'. Together they form a unique fingerprint.

  • Cite this