Micro-economics of apoptosis in cancer: NcRNAs modulation of BCL-2 family members

L. Villanova, S. Careccia, R. De Maria, M.E. Fiori

Research output: Contribution to journalArticle

Abstract

In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Original languageEnglish
JournalInternational Journal of Molecular Sciences
Volume19
Issue number4
DOIs
Publication statusPublished - 2018

Fingerprint

Untranslated RNA
apoptosis
B-Cell Lymphoma
Cell death
RNA
economics
cancer
Cells
Economics
Modulation
Apoptosis
modulation
Long Noncoding RNA
Neoplasms
MicroRNAs
Machinery
Tumors
machinery
Chemical activation
biology

Keywords

  • Apoptosis
  • BCL-2 family
  • Cancer
  • Long non-coding RNAs
  • MicroRNAs
  • Therapy resistance
  • microRNA
  • protein bcl 2
  • untranslated RNA
  • animal
  • apoptosis
  • genetics
  • human
  • neoplasm
  • physiology
  • Animals
  • Humans
  • Neoplasms
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Untranslated

Cite this

Micro-economics of apoptosis in cancer: NcRNAs modulation of BCL-2 family members. / Villanova, L.; Careccia, S.; De Maria, R.; Fiori, M.E.

In: International Journal of Molecular Sciences, Vol. 19, No. 4, 2018.

Research output: Contribution to journalArticle

@article{fb997afffbf14472a3671aebc2f0db6e,
title = "Micro-economics of apoptosis in cancer: NcRNAs modulation of BCL-2 family members",
abstract = "In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology. {\circledC} 2018 by the authors. Licensee MDPI, Basel, Switzerland.",
keywords = "Apoptosis, BCL-2 family, Cancer, Long non-coding RNAs, MicroRNAs, Therapy resistance, microRNA, protein bcl 2, untranslated RNA, animal, apoptosis, genetics, human, neoplasm, physiology, Animals, Humans, Neoplasms, Proto-Oncogene Proteins c-bcl-2, RNA, Untranslated",
author = "L. Villanova and S. Careccia and {De Maria}, R. and M.E. Fiori",
note = "Cited By :3 Export Date: 11 April 2019 Correspondence Address: De Maria, R.; Institute of General Pathology, Catholic University of the Sacred Heart and Gemelli PolyclinicItaly; email: Ruggero.DeMaria@unicatt.it Chemicals/CAS: protein bcl 2, 219306-68-0; MicroRNAs; Proto-Oncogene Proteins c-bcl-2; RNA, Untranslated Funding details: 17621 Funding text 1: Acknowledgments: Ruggero De Maria was supported by the Italian Association for Cancer Research (AIRC) (Investigator Grant 17621). Lidia Villanova is the owner of a fellowship award from Italian Foundation for Cancer Research (FIRC). References: Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Br. J. Cancer, 26, pp. 239-257; Adams, J.M., Cory, S., The Bcl-2 apoptotic switch in cancer development and therapy (2007) Oncogene, 26, pp. 1324-1337; Fulda, S., Galluzzi, L., Kroemer, G., Targeting mitochondria for cancer therapy (2010) Nat. Rev. Drug Discov., 9, pp. 447-464; Willis, S.N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J.I., Adams, J.M., Huang, D.C., Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins (2005) Genes Dev, 19, pp. 1294-1305; Willis, S.N., Fletcher, J.I., Kaufmann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Ierino, H., Bouillet, P., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak (2007) Science, 315, pp. 856-859; Bleicken, S., Landeta, O., Landajuela, A., Basanez, G., Garcia-Saez, A.J., Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size (2013) J. Biol. Chem., 288, pp. 33241-33252; Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Huang, D.C., Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function (2005) Mol. Cell, 17, pp. 393-403; Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., Newmeyer, D.D., BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly (2005) Mol. Cell, 17, pp. 525-535; Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70; Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., P53 mutations in human cancers (1991) Science, 253, pp. 49-53; Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Urashima, M., The landscape of somatic copy-number alteration across human cancers (2010) Nature, 463, pp. 899-905; van Der Heijden, M., Zimberlin, C.D., Nicholson, A.M., Colak, S., Kemp, R., Meijer, S.L., Medema, J.P., Winton, D.J., Bcl-2 is a critical mediator of intestinal transformation (2016) Nat. Commun., 7; Ni Chonghaile, T., Sarosiek, K.A., Vo, T.T., Ryan, J.A., Tammareddi, A., Moore Vdel, G., Deng, J., Tai, Y.T., Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy (2011) Science, 334, pp. 1129-1133; Lee, H.W., Lee, S.S., Lee, S.J., Um, H.D., Bcl-w is expressed in a majority of infiltrative gastric adenocarcinomas and suppresses the cancer cell death by blocking stress-activated protein kinase/c-Jun NH2-terminal kinase activation (2003) Cancer Res, 63, pp. 1093-1100; Lee, W.S., Woo, E.Y., Kwon, J., Park, M.J., Lee, J.S., Han, Y.H., Bae, I.H., Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of beta-Catenin (2013) Plos ONE, 8; Bae, I.H., Park, M.J., Yoon, S.H., Kang, S.W., Lee, S.S., Choi, K.M., Um, H.D., Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1 (2006) Cancer Res, 66, pp. 4991-4995; Du, Y.C., Lewis, B.C., Hanahan, D., Varmus, H., Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion (2007) Plos Biol, 5; Trisciuoglio, D., Tupone, M.G., Desideri, M., Di Martile, M., Gabellini, C., Buglioni, S., Pallocca, M., Del Bufalo, D., BCL-XL overexpression promotes tumor progression-associated properties (2017) Cell Death Dis, 8, p. 3216; Choi, S., Chen, Z., Tang, L.H., Fang, Y., Shin, S.J., Panarelli, N.C., Chen, Y.T., Du, Y.C., Bcl-xL promotes metastasis independent of its anti-apoptotic activity (2016) Nat. Commun., 7; Medan, D., Luanpitpong, S., Azad, N., Wang, L., Jiang, B.H., Davis, M.E., Barnett, J.B., Rojanasakul, Y., Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells (2012) Plos ONE, 7; An, J., Lv, J., Li, A., Qiao, J., Fang, L., Li, Z., Li, B., Wang, L., Constitutive expression of Bcl-2 induces epithelial-Mesenchymal transition in mammary epithelial cells (2015) BMC Cancer, 15, p. 476; Sun, T., Sun, B.C., Zhao, X.L., Zhao, N., Dong, X.Y., Che, N., Yao, Z., Zong, W.K., Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: A study of hepatocellular carcinoma (2011) Hepatology, 54, pp. 1690-1706; Liu, Z., Wild, C., Ding, Y., Ye, N., Chen, H., Wold, E.A., Zhou, J., BH4 domain of Bcl-2 as a novel target for cancer therapy (2016) Drug Discov. Today, 21, pp. 989-996; Villunger, A., Michalak, E.M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M.J., Adams, J.M., Strasser, A., P53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa (2003) Science, 302, pp. 1036-1038; Hershko, T., Ginsberg, D., Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis (2004) J. Biol. Chem., 279, pp. 8627-8634; Ekoff, M., Kaufmann, T., Engstrom, M., Motoyama, N., Villunger, A., Jonsson, J.I., Strasser, A., Nilsson, G., The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells (2007) Blood, 110, pp. 3209-3217; Puthalakath, H., Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Motoyama, N., ER stress triggers apoptosis by activating BH3-only protein Bim (2007) Cell, 129, pp. 1337-1349; Gatta, R., Dolfini, D., Mantovani, R., NF-Y joins E2Fs, p53 and other stress transcription factors at the apoptosis table (2011) Cell Death Dis, 2; Zhao, R., Gish, K., Murphy, M., Yin, Y., Notterman, D., Hoffman, W.H., Tom, E., Levine, A.J., Analysis of p53-regulated gene expression patterns using oligonucleotide arrays (2000) Genes Dev, 14, pp. 981-993; Morachis, J.M., Murawsky, C.M., Emerson, B.M., Regulation of the p53 transcriptional response by structurally diverse core promoters (2010) Genes Dev, 24, pp. 135-147; Inuzuka, H., Fukushima, H., Shaik, S., Liu, P., Lau, A.W., Wei, W., Mcl-1 ubiquitination and destruction (2011) Oncotarget, 2, pp. 239-244; Wertz, I.E., Kusam, S., Lam, C., Okamoto, T., Sandoval, W., Anderson, D.J., Helgason, E., Liu, J., Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7 (2011) Nature, 471, pp. 110-114; Del Re, D.P., Matsuda, T., Zhai, P., Maejima, Y., Jain, M.R., Liu, T., Li, H., Sadoshima, J., Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL (2014) Mol. Cell, 54, pp. 639-650; Lowman, X.H., McDonnell, M.A., Kosloske, A., Odumade, O.A., Jenness, C., Karim, C.B., Jemmerson, R., Kelekar, A., The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose (2010) Mol. Cell, 40, pp. 823-833; Hubner, A., Barrett, T., Flavell, R.A., Davis, R.J., Multisite phosphorylation regulates Bim stability and apoptotic activity (2008) Mol. Cell, 30, pp. 415-425; Fox, J.L., Ismail, F., Azad, A., Ternette, N., Leverrier, S., Edelmann, M.J., Kessler, B.M., Storey, A., Tyrosine dephosphorylation is required for Bak activation in apoptosis (2010) Embo J, 29, pp. 3853-3868; Gardai, S.J., Hildeman, D.A., Frankel, S.K., Whitlock, B.B., Frasch, S.C., Borregaard, N., Marrack, P., Henson, P.M., Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils (2004) J. Biol. Chem., 279, pp. 21085-21095; Xin, M., Deng, X., Nicotine inactivation of the proapoptotic function of Bax through phosphorylation (2005) J. Biol. Chem., 280, pp. 10781-10789; Dumitru, R., Gama, V., Fagan, B.M., Bower, J.J., Swahari, V., Pevny, L.H., Deshmukh, M., Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis (2012) Mol. Cell, 46, pp. 573-583; Edlich, F., Banerjee, S., Suzuki, M., Cleland, M.M., Arnoult, D., Wang, C., Neutzner, A., Youle, R.J., Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol (2011) Cell, 145, pp. 104-116; Bartel, D.P., MicroRNAs: Target recognition and regulatory functions (2009) Cell, 136, pp. 215-233; Rupaimoole, R., Slack, F.J., MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases (2017) Nat. Rev. Drug Discov., 16, pp. 203-222; Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rai, K., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia (2002) Proc. Natl. Acad. Sci, 99, pp. 15524-15529. , USA; Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Dono, M., MiR-15 and miR-16 induce apoptosis by targeting BCL2 (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 13944-13949; Singh, R., Saini, N., Downregulation of BCL2 by miRNAs augments drug-induced apoptosis—A combined computational and experimental approach (2012) J. Cell Sci., 125, pp. 1568-1578; Kuwano, Y., Nishida, K., Kajita, K., Satake, Y., Akaike, Y., Fujita, K., Kano, S., Rokutan, K., Transformer 2beta and miR-204 regulate apoptosis through competitive binding to 3′ UTR of BCL2 mRNA (2015) Cell Death Differ, 22, pp. 815-825; Fiori, M.E., Barbini, C., Haas, T.L., Marroncelli, N., Patrizii, M., Biffoni, M., de Maria, R., Antitumor effect of miR-197 targeting in p53 wild-type lung cancer (2014) Cell Death Differ, 21, pp. 774-782; Fiori, M.E., Villanova, L., Barbini, C., de Angelis, M.L., de Maria, R., MiR-663 sustains NSCLC by inhibiting mitochondrial outer membrane permeabilization (MOMP) through PUMA/BBC3 and BTG2 (2018) Cell Death Dis, 9, p. 49; Fontana, L., Fiori, M.E., Albini, S., Cifaldi, L., Giovinazzi, S., Forloni, M., Boldrini, R., Giacomini, P., Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM (2008) Plos ONE, 3; Kole, A.J., Swahari, V., Hammond, S.M., Deshmukh, M., MiR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis (2011) Genes Dev, 25, pp. 125-130; Xiong, Y., Fang, J.H., Yun, J.P., Yang, J., Zhang, Y., Jia, W.H., Zhuang, S.M., Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma (2010) Hepatology, 51, pp. 836-845; Mott, J.L., Kobayashi, S., Bronk, S.F., Gores, G.J., Mir-29 regulates Mcl-1 protein expression and apoptosis (2007) Oncogene, 26, pp. 6133-6140; Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., Kim, V.N., MiR-29 miRNAs activate p53 by targeting p85 alpha and CDC42 (2009) Nat. Struct. Mol. Biol., 16, pp. 23-29; Garzon, R., Heaphy, C.E., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., Zanesi, N., Calin, G.A., MicroRNA 29b functions in acute myeloid leukemia (2009) Blood, 114, pp. 5331-5341; Jiang, H., Zhang, G., Wu, J., Jiang, C.P., Diverse roles of miR-29 in cancer (Review) (2014) Oncol. Rep, 31, pp. 1509-1516; Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., Meister, G., Hermeking, H., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest (2007) Cell Cycle, 6, pp. 1586-1593; Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Lowenstein, C.J., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis (2007) Mol. Cell, 26, pp. 745-752; Kaller, M., Liffers, S.T., Oeljeklaus, S., Kuhlmann, K., Roh, S., Hoffmann, R., Warscheid, B., Hermeking, H., Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis (2011) Mol. Cell Proteom, 10; Welch, C., Chen, Y., Stallings, R.L., MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells (2007) Oncogene, 26, pp. 5017-5022; Okada, N., Lin, C.P., Ribeiro, M.C., Biton, A., Lai, G., He, X., Bu, P., Keller, A.C., A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression (2014) Genes Dev, 28, pp. 438-450; Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., Xu, L., Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres (2008) BMC Cancer, 8, p. 266; Gabellini, C., Trisciuoglio, D., Del Bufalo, D., Non-canonical roles of Bcl-2 and Bcl-xL proteins: Relevance of BH4 domain (2017) Carcinogenesis, 38, pp. 579-587; Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., Jiang, L., Xu, H., MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1 (2012) Oncogene, 31, pp. 1398-1407; Wang, K., Chen, X., Zhan, Y., Jiang, W., Liu, X., Wang, X., Wu, B., MiR-335 inhibits the proliferation and invasion of clear cell renal cell carcinoma cells through direct suppression of BCL-W (2015) Tumour Biol, 36, pp. 6875-6882; Reed, J.C., Drug insight: Cancer therapy strategies based on restoration of endogenous cell death mechanisms (2006) Nat. Clin. Pract. Oncol., 3, pp. 388-398; Gong, J., Zhang, J.P., Li, B., Zeng, C., You, K., Chen, M.X., Yuan, Y., Zhuang, S.M., MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R (2013) Oncogene, 32, pp. 3071-3079; He, H., Tian, W., Chen, H., Deng, Y., MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1 (2016) Mol. Med. Rep., 13, pp. 1923-1929; Jones, R.L., Swanton, C., Ewer, M.S., Anthracycline cardiotoxicity (2006) Expert Opin. Drug Saf., 5, pp. 791-809; Takemura, G., Fujiwara, H., Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management (2007) Prog. Cardiovasc. Dis., 49, pp. 330-352; Xie, Q., Wang, S., Zhao, Y., Zhang, Z., Qin, C., Yang, X., MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1 (2017) Oncotarget, 8, pp. 22003-22013; Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., Xiang, D., Fan, D., MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells (2009) Plos ONE, 4; Zhao, J.J., Chu, Z.B., Hu, Y., Lin, J., Wang, Z., Jiang, M., Chen, M., Zhou, Y., Targeting the miR-221-222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma (2015) Cancer Res, 75, pp. 4384-4397; Schmitt, A.M., Chang, H.Y., Long Noncoding RNAs in Cancer Pathways (2016) Cancer Cell, 29, pp. 452-463; Villanova, L., Micol, E., De-coding stemness pathways in cancer (2016) J. Stem Cell Res. Ther., 1; Chen, J., Liu, L., Wei, G., Wu, W., Luo, H., Yuan, J., Luo, J., Chen, R., The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUF1 (2016) Sci. Rep., 6, p. 32189; Xie, H., Liao, X., Chen, Z., Fang, Y., He, A., Zhong, Y., Gao, Q., Huang, W., LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells (2017) J. Cancer, 8, pp. 3803-3811; Han, Y., Liu, Y., Zhang, H., Wang, T., Diao, R., Jiang, Z., Gui, Y., Cai, Z., Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1 (2013) FEBS Lett, 587, pp. 3875-3882; Sun, Y., Hu, B., Wang, Q., Ye, M., Qiu, Q., Zhou, Y., Zeng, F., Guo, L., Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a (2018) Cell Death Dis, 9, p. 85; Ding, W., Ren, J., Ren, H., Wang, D., Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer (2017) Sci. Rep., 7, p. 17261; Wang, K., Jin, W., Song, Y., Fei, X., LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma (2017) Mol. Cancer, 16, p. 166; Liu, H., Zhou, G., Fu, X., Cui, H., Pu, G., Xiao, Y., Sun, W., Cao, S., Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX (2017) Oncotarget, 8, pp. 101899-101910; Sanchez, Y., Segura, V., Marin-Bejar, O., Athie, A., Marchese, F.P., Gonzalez, J., Bujanda, L., Huarte, M., Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature (2014) Nat. Commun., 5, p. 5812; Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Horlings, H.M., Wang, P., Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters (2011) Nat. Genet., 43, pp. 621-629; Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D., Huang, S., Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis (2015) Cell Res, 25, pp. 981-984; Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Munschauer, M., Circular RNAs are a large class of animal RNAs with regulatory potency (2013) Nature, 495, pp. 333-338; Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., Kjems, J., Natural RNA circles function as efficient microRNA sponges (2013) Nature, 495, pp. 384-388; Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Shi, G., Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs (2016) Nat. Commun., 7; Zhang, H., Wang, G., Ding, C., Liu, P., Wang, R., Ding, W., Tong, D., Wei, Q., Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression (2017) Oncotarget, 8, pp. 61687-61697; Du, W., Fang, L., Yang, W., Wu, N., Awan, F.M., Yang, Z., Yang, B.B., Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity (2017) Cell Death Differ, 24, pp. 357-370; Anastasiadou, E., Jacob, L.S., Slack, F.J., Non-coding RNA networks in cancer (2018) Nat. Rev. Cancer, 18, pp. 5-18; Finishing the euchromatic sequence of the human genome (2004) Nature, 431, pp. 931-945; An integrated encyclopedia of DNA elements in the human genome (2012) Nature, 489, pp. 57-74; Ashkenazi, A., Fairbrother, W.J., Leverson, J.D., Souers, A.J., From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors (2017) Nat. Rev. Drug Discov., 16, pp. 273-284; Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Hajduk, P.J., An inhibitor of Bcl-2 family proteins induces regression of solid tumours (2005) Nature, 435, pp. 677-681; Roberts, A.W., Seymour, J.F., Brown, J.R., Wierda, W.G., Kipps, T.J., Khaw, S.L., Carney, D.A., Xiong, H., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease (2012) J. Clin. Oncol., 30, pp. 488-496; Kipps, T.J., Eradat, H., Grosicki, S., Catalano, J., Cosolo, W., Dyagil, I.S., Yalamanchili, S., Punnoose, E., A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia (2015) Leuk Lymphoma, 56, pp. 2826-2833; Kipps, T.J., Navitoclax (ABT-263) Plus Fludarabine/Cyclophosphamide/Rituximab (FCR) or Bendamustine/ Rituximab (BR): A Phase 1 Study in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL) (2011) Blood, p. 118; Mason, K.D., Carpinelli, M.R., Fletcher, J.I., Collinge, J.E., Hilton, A.A., Ellis, S., Kelly, P.N., Roberts, A.W., Programmed anuclear cell death delimits platelet life span (2007) Cell, 128, pp. 1173-1186; Zhang, H., Nimmer, P.M., Tahir, S.K., Chen, J., Fryer, R.M., Hahn, K.R., Iciek, L.A., Nelson, R., Bcl-2 family proteins are essential for platelet survival (2007) Cell Death Differ, 14, pp. 943-951; Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D., Fairbrother, W.J., ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets (2013) Nat. Med., 19, pp. 202-208; Stilgenbauer, S., Eichhorst, B., Schetelig, J., Coutre, S., Seymour, J.F., Munir, T., Puvvada, S.D., Jurczak, W., Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study (2016) Lancet Oncol, 17, pp. 768-778; Konopleva, M., Contractor, R., Tsao, T., Samudio, I., Ruvolo, P.P., Kitada, S., Deng, X., Sneed, T., Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia (2006) Cancer Cell, 10, pp. 375-388; van Delft, M.F., Wei, A.H., Mason, K.D., Vandenberg, C.J., Chen, L., Czabotar, P.E., Willis, S.N., Cory, S., The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized (2006) Cancer Cell, 10, pp. 389-399; Leverson, J.D., Zhang, H., Chen, J., Tahir, S.K., Phillips, D.C., Xue, J., Nimmer, P., Xiao, Y., Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (Navitoclax) (2015) Cell Death Dis, 6; Meynet, O., Zunino, B., Happo, L., Pradelli, L.A., Chiche, J., Jacquin, M.A., Mondragon, L., Garnier, G., Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice (2013) Blood, 122, pp. 2402-2411; Cerella, C., Gaigneaux, A., Mazumder, A., Lee, J.Y., Saland, E., Radogna, F., Farge, T., Sarry, J.E., Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia (2017) Leukemia, 31, pp. 755-759; Adams, B.D., Anastasiadou, E., Esteller, M., He, L., Slack, F.J., The Inescapable Influence of Noncoding RNAs in Cancer (2015) Cancer Res, 75, pp. 5206-5210; Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Pattison, S.T., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics (2007) Cancer Cell, 11, pp. 431-445; van Zandwijk, N., Pavlakis, N., Kao, S.C., Linton, A., Boyer, M.J., Clarke, S., Huynh, Y., Bailey, D.L., Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study (2017) Lancet Oncol, 18, pp. 1386-1396",
year = "2018",
doi = "10.3390/ijms19040958",
language = "English",
volume = "19",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "MDPI AG",
number = "4",

}

TY - JOUR

T1 - Micro-economics of apoptosis in cancer: NcRNAs modulation of BCL-2 family members

AU - Villanova, L.

AU - Careccia, S.

AU - De Maria, R.

AU - Fiori, M.E.

N1 - Cited By :3 Export Date: 11 April 2019 Correspondence Address: De Maria, R.; Institute of General Pathology, Catholic University of the Sacred Heart and Gemelli PolyclinicItaly; email: Ruggero.DeMaria@unicatt.it Chemicals/CAS: protein bcl 2, 219306-68-0; MicroRNAs; Proto-Oncogene Proteins c-bcl-2; RNA, Untranslated Funding details: 17621 Funding text 1: Acknowledgments: Ruggero De Maria was supported by the Italian Association for Cancer Research (AIRC) (Investigator Grant 17621). Lidia Villanova is the owner of a fellowship award from Italian Foundation for Cancer Research (FIRC). References: Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Br. J. Cancer, 26, pp. 239-257; Adams, J.M., Cory, S., The Bcl-2 apoptotic switch in cancer development and therapy (2007) Oncogene, 26, pp. 1324-1337; Fulda, S., Galluzzi, L., Kroemer, G., Targeting mitochondria for cancer therapy (2010) Nat. Rev. Drug Discov., 9, pp. 447-464; Willis, S.N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J.I., Adams, J.M., Huang, D.C., Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins (2005) Genes Dev, 19, pp. 1294-1305; Willis, S.N., Fletcher, J.I., Kaufmann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Ierino, H., Bouillet, P., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak (2007) Science, 315, pp. 856-859; Bleicken, S., Landeta, O., Landajuela, A., Basanez, G., Garcia-Saez, A.J., Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size (2013) J. Biol. Chem., 288, pp. 33241-33252; Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Huang, D.C., Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function (2005) Mol. Cell, 17, pp. 393-403; Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., Newmeyer, D.D., BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly (2005) Mol. Cell, 17, pp. 525-535; Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70; Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., P53 mutations in human cancers (1991) Science, 253, pp. 49-53; Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Urashima, M., The landscape of somatic copy-number alteration across human cancers (2010) Nature, 463, pp. 899-905; van Der Heijden, M., Zimberlin, C.D., Nicholson, A.M., Colak, S., Kemp, R., Meijer, S.L., Medema, J.P., Winton, D.J., Bcl-2 is a critical mediator of intestinal transformation (2016) Nat. Commun., 7; Ni Chonghaile, T., Sarosiek, K.A., Vo, T.T., Ryan, J.A., Tammareddi, A., Moore Vdel, G., Deng, J., Tai, Y.T., Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy (2011) Science, 334, pp. 1129-1133; Lee, H.W., Lee, S.S., Lee, S.J., Um, H.D., Bcl-w is expressed in a majority of infiltrative gastric adenocarcinomas and suppresses the cancer cell death by blocking stress-activated protein kinase/c-Jun NH2-terminal kinase activation (2003) Cancer Res, 63, pp. 1093-1100; Lee, W.S., Woo, E.Y., Kwon, J., Park, M.J., Lee, J.S., Han, Y.H., Bae, I.H., Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of beta-Catenin (2013) Plos ONE, 8; Bae, I.H., Park, M.J., Yoon, S.H., Kang, S.W., Lee, S.S., Choi, K.M., Um, H.D., Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1 (2006) Cancer Res, 66, pp. 4991-4995; Du, Y.C., Lewis, B.C., Hanahan, D., Varmus, H., Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion (2007) Plos Biol, 5; Trisciuoglio, D., Tupone, M.G., Desideri, M., Di Martile, M., Gabellini, C., Buglioni, S., Pallocca, M., Del Bufalo, D., BCL-XL overexpression promotes tumor progression-associated properties (2017) Cell Death Dis, 8, p. 3216; Choi, S., Chen, Z., Tang, L.H., Fang, Y., Shin, S.J., Panarelli, N.C., Chen, Y.T., Du, Y.C., Bcl-xL promotes metastasis independent of its anti-apoptotic activity (2016) Nat. Commun., 7; Medan, D., Luanpitpong, S., Azad, N., Wang, L., Jiang, B.H., Davis, M.E., Barnett, J.B., Rojanasakul, Y., Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells (2012) Plos ONE, 7; An, J., Lv, J., Li, A., Qiao, J., Fang, L., Li, Z., Li, B., Wang, L., Constitutive expression of Bcl-2 induces epithelial-Mesenchymal transition in mammary epithelial cells (2015) BMC Cancer, 15, p. 476; Sun, T., Sun, B.C., Zhao, X.L., Zhao, N., Dong, X.Y., Che, N., Yao, Z., Zong, W.K., Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: A study of hepatocellular carcinoma (2011) Hepatology, 54, pp. 1690-1706; Liu, Z., Wild, C., Ding, Y., Ye, N., Chen, H., Wold, E.A., Zhou, J., BH4 domain of Bcl-2 as a novel target for cancer therapy (2016) Drug Discov. Today, 21, pp. 989-996; Villunger, A., Michalak, E.M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M.J., Adams, J.M., Strasser, A., P53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa (2003) Science, 302, pp. 1036-1038; Hershko, T., Ginsberg, D., Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis (2004) J. Biol. Chem., 279, pp. 8627-8634; Ekoff, M., Kaufmann, T., Engstrom, M., Motoyama, N., Villunger, A., Jonsson, J.I., Strasser, A., Nilsson, G., The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells (2007) Blood, 110, pp. 3209-3217; Puthalakath, H., Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Motoyama, N., ER stress triggers apoptosis by activating BH3-only protein Bim (2007) Cell, 129, pp. 1337-1349; Gatta, R., Dolfini, D., Mantovani, R., NF-Y joins E2Fs, p53 and other stress transcription factors at the apoptosis table (2011) Cell Death Dis, 2; Zhao, R., Gish, K., Murphy, M., Yin, Y., Notterman, D., Hoffman, W.H., Tom, E., Levine, A.J., Analysis of p53-regulated gene expression patterns using oligonucleotide arrays (2000) Genes Dev, 14, pp. 981-993; Morachis, J.M., Murawsky, C.M., Emerson, B.M., Regulation of the p53 transcriptional response by structurally diverse core promoters (2010) Genes Dev, 24, pp. 135-147; Inuzuka, H., Fukushima, H., Shaik, S., Liu, P., Lau, A.W., Wei, W., Mcl-1 ubiquitination and destruction (2011) Oncotarget, 2, pp. 239-244; Wertz, I.E., Kusam, S., Lam, C., Okamoto, T., Sandoval, W., Anderson, D.J., Helgason, E., Liu, J., Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7 (2011) Nature, 471, pp. 110-114; Del Re, D.P., Matsuda, T., Zhai, P., Maejima, Y., Jain, M.R., Liu, T., Li, H., Sadoshima, J., Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL (2014) Mol. Cell, 54, pp. 639-650; Lowman, X.H., McDonnell, M.A., Kosloske, A., Odumade, O.A., Jenness, C., Karim, C.B., Jemmerson, R., Kelekar, A., The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose (2010) Mol. Cell, 40, pp. 823-833; Hubner, A., Barrett, T., Flavell, R.A., Davis, R.J., Multisite phosphorylation regulates Bim stability and apoptotic activity (2008) Mol. Cell, 30, pp. 415-425; Fox, J.L., Ismail, F., Azad, A., Ternette, N., Leverrier, S., Edelmann, M.J., Kessler, B.M., Storey, A., Tyrosine dephosphorylation is required for Bak activation in apoptosis (2010) Embo J, 29, pp. 3853-3868; Gardai, S.J., Hildeman, D.A., Frankel, S.K., Whitlock, B.B., Frasch, S.C., Borregaard, N., Marrack, P., Henson, P.M., Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils (2004) J. Biol. Chem., 279, pp. 21085-21095; Xin, M., Deng, X., Nicotine inactivation of the proapoptotic function of Bax through phosphorylation (2005) J. Biol. Chem., 280, pp. 10781-10789; Dumitru, R., Gama, V., Fagan, B.M., Bower, J.J., Swahari, V., Pevny, L.H., Deshmukh, M., Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis (2012) Mol. Cell, 46, pp. 573-583; Edlich, F., Banerjee, S., Suzuki, M., Cleland, M.M., Arnoult, D., Wang, C., Neutzner, A., Youle, R.J., Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol (2011) Cell, 145, pp. 104-116; Bartel, D.P., MicroRNAs: Target recognition and regulatory functions (2009) Cell, 136, pp. 215-233; Rupaimoole, R., Slack, F.J., MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases (2017) Nat. Rev. Drug Discov., 16, pp. 203-222; Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rai, K., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia (2002) Proc. Natl. Acad. Sci, 99, pp. 15524-15529. , USA; Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Dono, M., MiR-15 and miR-16 induce apoptosis by targeting BCL2 (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 13944-13949; Singh, R., Saini, N., Downregulation of BCL2 by miRNAs augments drug-induced apoptosis—A combined computational and experimental approach (2012) J. Cell Sci., 125, pp. 1568-1578; Kuwano, Y., Nishida, K., Kajita, K., Satake, Y., Akaike, Y., Fujita, K., Kano, S., Rokutan, K., Transformer 2beta and miR-204 regulate apoptosis through competitive binding to 3′ UTR of BCL2 mRNA (2015) Cell Death Differ, 22, pp. 815-825; Fiori, M.E., Barbini, C., Haas, T.L., Marroncelli, N., Patrizii, M., Biffoni, M., de Maria, R., Antitumor effect of miR-197 targeting in p53 wild-type lung cancer (2014) Cell Death Differ, 21, pp. 774-782; Fiori, M.E., Villanova, L., Barbini, C., de Angelis, M.L., de Maria, R., MiR-663 sustains NSCLC by inhibiting mitochondrial outer membrane permeabilization (MOMP) through PUMA/BBC3 and BTG2 (2018) Cell Death Dis, 9, p. 49; Fontana, L., Fiori, M.E., Albini, S., Cifaldi, L., Giovinazzi, S., Forloni, M., Boldrini, R., Giacomini, P., Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM (2008) Plos ONE, 3; Kole, A.J., Swahari, V., Hammond, S.M., Deshmukh, M., MiR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis (2011) Genes Dev, 25, pp. 125-130; Xiong, Y., Fang, J.H., Yun, J.P., Yang, J., Zhang, Y., Jia, W.H., Zhuang, S.M., Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma (2010) Hepatology, 51, pp. 836-845; Mott, J.L., Kobayashi, S., Bronk, S.F., Gores, G.J., Mir-29 regulates Mcl-1 protein expression and apoptosis (2007) Oncogene, 26, pp. 6133-6140; Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., Kim, V.N., MiR-29 miRNAs activate p53 by targeting p85 alpha and CDC42 (2009) Nat. Struct. Mol. Biol., 16, pp. 23-29; Garzon, R., Heaphy, C.E., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., Zanesi, N., Calin, G.A., MicroRNA 29b functions in acute myeloid leukemia (2009) Blood, 114, pp. 5331-5341; Jiang, H., Zhang, G., Wu, J., Jiang, C.P., Diverse roles of miR-29 in cancer (Review) (2014) Oncol. Rep, 31, pp. 1509-1516; Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., Meister, G., Hermeking, H., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest (2007) Cell Cycle, 6, pp. 1586-1593; Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Lowenstein, C.J., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis (2007) Mol. Cell, 26, pp. 745-752; Kaller, M., Liffers, S.T., Oeljeklaus, S., Kuhlmann, K., Roh, S., Hoffmann, R., Warscheid, B., Hermeking, H., Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis (2011) Mol. Cell Proteom, 10; Welch, C., Chen, Y., Stallings, R.L., MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells (2007) Oncogene, 26, pp. 5017-5022; Okada, N., Lin, C.P., Ribeiro, M.C., Biton, A., Lai, G., He, X., Bu, P., Keller, A.C., A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression (2014) Genes Dev, 28, pp. 438-450; Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., Xu, L., Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres (2008) BMC Cancer, 8, p. 266; Gabellini, C., Trisciuoglio, D., Del Bufalo, D., Non-canonical roles of Bcl-2 and Bcl-xL proteins: Relevance of BH4 domain (2017) Carcinogenesis, 38, pp. 579-587; Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., Jiang, L., Xu, H., MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1 (2012) Oncogene, 31, pp. 1398-1407; Wang, K., Chen, X., Zhan, Y., Jiang, W., Liu, X., Wang, X., Wu, B., MiR-335 inhibits the proliferation and invasion of clear cell renal cell carcinoma cells through direct suppression of BCL-W (2015) Tumour Biol, 36, pp. 6875-6882; Reed, J.C., Drug insight: Cancer therapy strategies based on restoration of endogenous cell death mechanisms (2006) Nat. Clin. Pract. Oncol., 3, pp. 388-398; Gong, J., Zhang, J.P., Li, B., Zeng, C., You, K., Chen, M.X., Yuan, Y., Zhuang, S.M., MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R (2013) Oncogene, 32, pp. 3071-3079; He, H., Tian, W., Chen, H., Deng, Y., MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1 (2016) Mol. Med. Rep., 13, pp. 1923-1929; Jones, R.L., Swanton, C., Ewer, M.S., Anthracycline cardiotoxicity (2006) Expert Opin. Drug Saf., 5, pp. 791-809; Takemura, G., Fujiwara, H., Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management (2007) Prog. Cardiovasc. Dis., 49, pp. 330-352; Xie, Q., Wang, S., Zhao, Y., Zhang, Z., Qin, C., Yang, X., MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1 (2017) Oncotarget, 8, pp. 22003-22013; Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., Xiang, D., Fan, D., MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells (2009) Plos ONE, 4; Zhao, J.J., Chu, Z.B., Hu, Y., Lin, J., Wang, Z., Jiang, M., Chen, M., Zhou, Y., Targeting the miR-221-222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma (2015) Cancer Res, 75, pp. 4384-4397; Schmitt, A.M., Chang, H.Y., Long Noncoding RNAs in Cancer Pathways (2016) Cancer Cell, 29, pp. 452-463; Villanova, L., Micol, E., De-coding stemness pathways in cancer (2016) J. Stem Cell Res. Ther., 1; Chen, J., Liu, L., Wei, G., Wu, W., Luo, H., Yuan, J., Luo, J., Chen, R., The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUF1 (2016) Sci. Rep., 6, p. 32189; Xie, H., Liao, X., Chen, Z., Fang, Y., He, A., Zhong, Y., Gao, Q., Huang, W., LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells (2017) J. Cancer, 8, pp. 3803-3811; Han, Y., Liu, Y., Zhang, H., Wang, T., Diao, R., Jiang, Z., Gui, Y., Cai, Z., Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1 (2013) FEBS Lett, 587, pp. 3875-3882; Sun, Y., Hu, B., Wang, Q., Ye, M., Qiu, Q., Zhou, Y., Zeng, F., Guo, L., Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a (2018) Cell Death Dis, 9, p. 85; Ding, W., Ren, J., Ren, H., Wang, D., Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer (2017) Sci. Rep., 7, p. 17261; Wang, K., Jin, W., Song, Y., Fei, X., LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma (2017) Mol. Cancer, 16, p. 166; Liu, H., Zhou, G., Fu, X., Cui, H., Pu, G., Xiao, Y., Sun, W., Cao, S., Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX (2017) Oncotarget, 8, pp. 101899-101910; Sanchez, Y., Segura, V., Marin-Bejar, O., Athie, A., Marchese, F.P., Gonzalez, J., Bujanda, L., Huarte, M., Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature (2014) Nat. Commun., 5, p. 5812; Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Horlings, H.M., Wang, P., Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters (2011) Nat. Genet., 43, pp. 621-629; Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D., Huang, S., Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis (2015) Cell Res, 25, pp. 981-984; Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Munschauer, M., Circular RNAs are a large class of animal RNAs with regulatory potency (2013) Nature, 495, pp. 333-338; Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., Kjems, J., Natural RNA circles function as efficient microRNA sponges (2013) Nature, 495, pp. 384-388; Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Shi, G., Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs (2016) Nat. Commun., 7; Zhang, H., Wang, G., Ding, C., Liu, P., Wang, R., Ding, W., Tong, D., Wei, Q., Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression (2017) Oncotarget, 8, pp. 61687-61697; Du, W., Fang, L., Yang, W., Wu, N., Awan, F.M., Yang, Z., Yang, B.B., Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity (2017) Cell Death Differ, 24, pp. 357-370; Anastasiadou, E., Jacob, L.S., Slack, F.J., Non-coding RNA networks in cancer (2018) Nat. Rev. Cancer, 18, pp. 5-18; Finishing the euchromatic sequence of the human genome (2004) Nature, 431, pp. 931-945; An integrated encyclopedia of DNA elements in the human genome (2012) Nature, 489, pp. 57-74; Ashkenazi, A., Fairbrother, W.J., Leverson, J.D., Souers, A.J., From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors (2017) Nat. Rev. Drug Discov., 16, pp. 273-284; Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Hajduk, P.J., An inhibitor of Bcl-2 family proteins induces regression of solid tumours (2005) Nature, 435, pp. 677-681; Roberts, A.W., Seymour, J.F., Brown, J.R., Wierda, W.G., Kipps, T.J., Khaw, S.L., Carney, D.A., Xiong, H., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease (2012) J. Clin. Oncol., 30, pp. 488-496; Kipps, T.J., Eradat, H., Grosicki, S., Catalano, J., Cosolo, W., Dyagil, I.S., Yalamanchili, S., Punnoose, E., A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia (2015) Leuk Lymphoma, 56, pp. 2826-2833; Kipps, T.J., Navitoclax (ABT-263) Plus Fludarabine/Cyclophosphamide/Rituximab (FCR) or Bendamustine/ Rituximab (BR): A Phase 1 Study in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL) (2011) Blood, p. 118; Mason, K.D., Carpinelli, M.R., Fletcher, J.I., Collinge, J.E., Hilton, A.A., Ellis, S., Kelly, P.N., Roberts, A.W., Programmed anuclear cell death delimits platelet life span (2007) Cell, 128, pp. 1173-1186; Zhang, H., Nimmer, P.M., Tahir, S.K., Chen, J., Fryer, R.M., Hahn, K.R., Iciek, L.A., Nelson, R., Bcl-2 family proteins are essential for platelet survival (2007) Cell Death Differ, 14, pp. 943-951; Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D., Fairbrother, W.J., ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets (2013) Nat. Med., 19, pp. 202-208; Stilgenbauer, S., Eichhorst, B., Schetelig, J., Coutre, S., Seymour, J.F., Munir, T., Puvvada, S.D., Jurczak, W., Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study (2016) Lancet Oncol, 17, pp. 768-778; Konopleva, M., Contractor, R., Tsao, T., Samudio, I., Ruvolo, P.P., Kitada, S., Deng, X., Sneed, T., Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia (2006) Cancer Cell, 10, pp. 375-388; van Delft, M.F., Wei, A.H., Mason, K.D., Vandenberg, C.J., Chen, L., Czabotar, P.E., Willis, S.N., Cory, S., The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized (2006) Cancer Cell, 10, pp. 389-399; Leverson, J.D., Zhang, H., Chen, J., Tahir, S.K., Phillips, D.C., Xue, J., Nimmer, P., Xiao, Y., Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (Navitoclax) (2015) Cell Death Dis, 6; Meynet, O., Zunino, B., Happo, L., Pradelli, L.A., Chiche, J., Jacquin, M.A., Mondragon, L., Garnier, G., Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice (2013) Blood, 122, pp. 2402-2411; Cerella, C., Gaigneaux, A., Mazumder, A., Lee, J.Y., Saland, E., Radogna, F., Farge, T., Sarry, J.E., Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia (2017) Leukemia, 31, pp. 755-759; Adams, B.D., Anastasiadou, E., Esteller, M., He, L., Slack, F.J., The Inescapable Influence of Noncoding RNAs in Cancer (2015) Cancer Res, 75, pp. 5206-5210; Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Pattison, S.T., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics (2007) Cancer Cell, 11, pp. 431-445; van Zandwijk, N., Pavlakis, N., Kao, S.C., Linton, A., Boyer, M.J., Clarke, S., Huynh, Y., Bailey, D.L., Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study (2017) Lancet Oncol, 18, pp. 1386-1396

PY - 2018

Y1 - 2018

N2 - In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.

AB - In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.

KW - Apoptosis

KW - BCL-2 family

KW - Cancer

KW - Long non-coding RNAs

KW - MicroRNAs

KW - Therapy resistance

KW - microRNA

KW - protein bcl 2

KW - untranslated RNA

KW - animal

KW - apoptosis

KW - genetics

KW - human

KW - neoplasm

KW - physiology

KW - Animals

KW - Humans

KW - Neoplasms

KW - Proto-Oncogene Proteins c-bcl-2

KW - RNA, Untranslated

U2 - 10.3390/ijms19040958

DO - 10.3390/ijms19040958

M3 - Article

VL - 19

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 4

ER -