Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans

Michael Fenech, Siegfried Knasmueller, Claudia Bolognesi, Nina Holland, Stefano Bonassi, Micheline Kirsch-Volders

Research output: Contribution to journalReview articlepeer-review


Micronuclei (MNi) are among the most widely studied biomarkers of DNA damage and chromosomal instability in humans. They originate from chromosome fragments or intact chromosomes that are not included in daughter nuclei during mitosis. The main reasons for their formation are a lack of functional centromere in the chromosome fragments or whole chromosomes or defects in one or more of the proteins of the mitotic system that, consequently, fails to segregate chromosomes properly. Assays have been developed to measure MNi in peripheral blood lymphocytes, red blood cells as well as various types of epithelial cells such as buccal, nasal, urothelial and cervical cells. Some of the assays have been further developed into micronucleus (MN) cytome assays to include additional nuclear anomalies, cell death and nuclear division biomarkers. In addition, the use of molecular probes has been adopted widely for the purpose of understanding the mechanistic origin of MNi. MN assays in humans are used for the purpose of investigating the genotoxic effects of adverse environmental, life-style and occupational factors, genetic susceptibility to DNA damage, and for determining risk of accelerated aging and diseases affected by genomic instability such as developmental defects and cancer. The emerging new knowledge showing that chromosomes trapped in MNi can undergo a high rate of fragmentation and become massively re-arranged have highlighted the possibility that MN formation is not only a biomarker of induced DNA damage but also a mechanism that drives hypermutation. Furthermore, another line of recent research showed that DNA and chromatin leaking from disrupted MNi triggers the innate immune cGAS-STING mechanism that promotes inflammation which can cause a wide-range of age-related diseases if left unresolved. For these reasons, MN assays in humans have become an increasingly important biomarker of disease initiation and progression across all life-stages.

Original languageEnglish
Article number108342
JournalMutation Research - Reviews in Mutation Research
Publication statusPublished - Oct 1 2020


  • Aneuploidy
  • DNA damage
  • Human
  • Inflammation
  • Micronuclei
  • Micronucleus

ASJC Scopus subject areas

  • Genetics
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans'. Together they form a unique fingerprint.

Cite this