TY - JOUR
T1 - Microtransplantation of membranes from cultured cells to Xenopus oocytes
T2 - A method to study neurotransmitter receptors embedded in native lipids
AU - Palma, Eleonora
AU - Trettel, Flavia
AU - Fucile, Sergio
AU - Renzi, Massimiliano
AU - Miledi, Ricardo
AU - Eusebi, Fabrizio
PY - 2003/3/4
Y1 - 2003/3/4
N2 - The Xenopus oocyte is used as a convenient cell expression system to study the structure and function of heterogenic transmitter receptors and ion channels. Recently, we introduced a method to microtransplant already assembled neurotransmitter receptors from the human brain to the plasma membrane of Xenopus oocytes. The same approach was used here to transplant neurotransmitter receptors expressed from cultured cells to the oocytes. Membrane vesicles prepared from a human embryonic kidney cell line (HEK293) stably expressing the rat glutamate receptor 1 were injected into oocytes, and, within a few hours, the oocyte plasma membrane acquired α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors, which had the same properties as those expressed in the original HEK cells. Analogously, oocytes injected with membranes prepared from rat pituitary GH(4)C1 cells, stably expressing homomeric human neuronal α7 nicotinic acetylcholine receptors (α7-AcChoRs), incorporated in their plasma membrane AcChoRs that behaved as those expressed in GH(4)C1 cells. Similar results were obtained with HEK cells stably expressing heteromeric human neuronal α4β2-AcChoRs. All this makes the Xenopus oocyte a powerful tool for detailed investigations of receptors and other proteins expressed in the membrane of cultured cells.
AB - The Xenopus oocyte is used as a convenient cell expression system to study the structure and function of heterogenic transmitter receptors and ion channels. Recently, we introduced a method to microtransplant already assembled neurotransmitter receptors from the human brain to the plasma membrane of Xenopus oocytes. The same approach was used here to transplant neurotransmitter receptors expressed from cultured cells to the oocytes. Membrane vesicles prepared from a human embryonic kidney cell line (HEK293) stably expressing the rat glutamate receptor 1 were injected into oocytes, and, within a few hours, the oocyte plasma membrane acquired α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors, which had the same properties as those expressed in the original HEK cells. Analogously, oocytes injected with membranes prepared from rat pituitary GH(4)C1 cells, stably expressing homomeric human neuronal α7 nicotinic acetylcholine receptors (α7-AcChoRs), incorporated in their plasma membrane AcChoRs that behaved as those expressed in GH(4)C1 cells. Similar results were obtained with HEK cells stably expressing heteromeric human neuronal α4β2-AcChoRs. All this makes the Xenopus oocyte a powerful tool for detailed investigations of receptors and other proteins expressed in the membrane of cultured cells.
UR - http://www.scopus.com/inward/record.url?scp=0037418296&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037418296&partnerID=8YFLogxK
U2 - 10.1073/pnas.0438006100
DO - 10.1073/pnas.0438006100
M3 - Article
C2 - 12595576
AN - SCOPUS:0037418296
VL - 100
SP - 2896
EP - 2900
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 5
ER -