TY - JOUR
T1 - Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations
AU - Olivotto, Iacopo
AU - Girolami, Francesca
AU - Sciagr, Roberto
AU - Ackerman, Michael J.
AU - Sotgia, Barbara
AU - Bos, J. Martijn
AU - Nistri, Stefano
AU - Sgalambro, Aurelio
AU - Grifoni, Camilla
AU - Torricelli, Francesca
AU - Camici, Paolo G.
AU - Cecchi, Franco
PY - 2011/8/16
Y1 - 2011/8/16
N2 - Objectives: The purpose of this study was to assess myocardial blood flow (MBF) using positron emission tomography in patients with hypertrophic cardiomyopathy (HCM) according to genetic status. Background: Coronary microvascular dysfunction is an important feature of HCM, associated with ventricular remodeling and heart failure. We recently demonstrated the increased prevalence of systolic dysfunction in patients with HCM with sarcomere myofilament gene mutations and postulated an association between genetic status and coronary microvascular dysfunction. Methods: Maximum MBF (intravenous dipyridamole, 0.56 mg/kg; Dip-MBF) was measured using 13N-labeled ammonia in 61 patients with HCM (age 38 ± 14 years), genotyped by automatic DNA sequencing of 8 myofilament-encoding genes (myosin-binding protein C, beta-myosin heavy chain, regulatory and essential light chains, troponin T, troponin I, troponin C, alpha-tropomyosin, and alpha-actin). In 35 patients, cardiac magnetic resonance imaging was performed. Results: Fifty-three mutations were identified in 42 of the 61 patients (genotype positive; 69%). Despite similar clinical profiles, genotype-positive patients with HCM showed substantially lower Dip-MBF compared with that of genotype-negative patients (1.7 ± 0.6 ml/min/g vs. 2.4 ± 1.2 ml/min/g; p <0.02). A Dip-MBF
AB - Objectives: The purpose of this study was to assess myocardial blood flow (MBF) using positron emission tomography in patients with hypertrophic cardiomyopathy (HCM) according to genetic status. Background: Coronary microvascular dysfunction is an important feature of HCM, associated with ventricular remodeling and heart failure. We recently demonstrated the increased prevalence of systolic dysfunction in patients with HCM with sarcomere myofilament gene mutations and postulated an association between genetic status and coronary microvascular dysfunction. Methods: Maximum MBF (intravenous dipyridamole, 0.56 mg/kg; Dip-MBF) was measured using 13N-labeled ammonia in 61 patients with HCM (age 38 ± 14 years), genotyped by automatic DNA sequencing of 8 myofilament-encoding genes (myosin-binding protein C, beta-myosin heavy chain, regulatory and essential light chains, troponin T, troponin I, troponin C, alpha-tropomyosin, and alpha-actin). In 35 patients, cardiac magnetic resonance imaging was performed. Results: Fifty-three mutations were identified in 42 of the 61 patients (genotype positive; 69%). Despite similar clinical profiles, genotype-positive patients with HCM showed substantially lower Dip-MBF compared with that of genotype-negative patients (1.7 ± 0.6 ml/min/g vs. 2.4 ± 1.2 ml/min/g; p <0.02). A Dip-MBF
KW - genetic testing
KW - hypertrophic cardiomyopathy
KW - microvascular dysfunction
KW - positron emission tomography
UR - http://www.scopus.com/inward/record.url?scp=80051623476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051623476&partnerID=8YFLogxK
U2 - 10.1016/j.jacc.2011.05.018
DO - 10.1016/j.jacc.2011.05.018
M3 - Article
C2 - 21835320
AN - SCOPUS:80051623476
VL - 58
SP - 839
EP - 848
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
SN - 0735-1097
IS - 8
ER -