Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs

Guang Hui Liu, Keiichiro Suzuki, Mo Li, Jing Qu, Nuria Montserrat, Carolina Tarantino, Ying Gu, Fei Yi, Xiuling Xu, Weiqi Zhang, Sergio Ruiz, Nongluk Plongthongkum, Kun Zhang, Shigeo Masuda, Emmanuel Nivet, Yuji Tsunekawa, Rupa Devi Soligalla, April Goebl, Emi Aizawa, Na Young KimJessica Kim, Ilir Dubova, Ying Li, Ruotong Ren, Chris Benner, Antonio Del Sol, Juan Bueren, Juan Pablo Trujillo, Jordi Surralles, Enrico Cappelli, Carlo Dufour, Concepcion Rodriguez Esteban, Juan Carlos Izpisua Belmonte

Research output: Contribution to journalArticle

Abstract

Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.

Original languageEnglish
Article number4330
JournalNature Communications
Volume5
DOIs
Publication statusPublished - Jul 7 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs'. Together they form a unique fingerprint.

  • Cite this

    Liu, G. H., Suzuki, K., Li, M., Qu, J., Montserrat, N., Tarantino, C., Gu, Y., Yi, F., Xu, X., Zhang, W., Ruiz, S., Plongthongkum, N., Zhang, K., Masuda, S., Nivet, E., Tsunekawa, Y., Soligalla, R. D., Goebl, A., Aizawa, E., ... Belmonte, J. C. I. (2014). Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 5, [4330]. https://doi.org/10.1038/ncomms5330