Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes

Research output: Contribution to journalArticle

Abstract

Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-reliability using exclusively topology are valuable in network biology, and their investigation facilitates the general understanding of topological mechanisms and models to draw and correct complex network connectivity. Here, I revise and extend the local-community-paradigm (LCP). Initially detected in brain-network topological self-organization and afterward generalized to any complex network, the LCP is a theory to model local-topology-dependent link-growth in complex networks using network automata. Four novel LCP-models are compared versus baseline local-topology-models. It emerges that the reliability of an interaction between two proteins is higher: (i) if their common neighbours are isolated in a complex (local-community) that has low tendency to interact with other external proteins; (ii) if they have a low propensity to link with other proteins external to the local-community. These two rules are mathematically combined in C1*: a proposed mechanistic model that, in fact, outperforms the others. This theoretical study elucidates basic topological rules behind self-organization principia of protein interactomes and offers the conceptual basis to extend this theory to any class of complex networks. The link-reliability improvement, based on the mere topology, can impact many applied domains such as systems biology and network medicine.

Original languageEnglish
Pages (from-to)15760
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - Oct 25 2018

Fingerprint

Brain
Proteins
Systems Biology
Theoretical Models
Medicine
Growth

Cite this

@article{35ed2112a09743fb8b5f241868f42ff8,
title = "Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes",
abstract = "Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-reliability using exclusively topology are valuable in network biology, and their investigation facilitates the general understanding of topological mechanisms and models to draw and correct complex network connectivity. Here, I revise and extend the local-community-paradigm (LCP). Initially detected in brain-network topological self-organization and afterward generalized to any complex network, the LCP is a theory to model local-topology-dependent link-growth in complex networks using network automata. Four novel LCP-models are compared versus baseline local-topology-models. It emerges that the reliability of an interaction between two proteins is higher: (i) if their common neighbours are isolated in a complex (local-community) that has low tendency to interact with other external proteins; (ii) if they have a low propensity to link with other proteins external to the local-community. These two rules are mathematically combined in C1*: a proposed mechanistic model that, in fact, outperforms the others. This theoretical study elucidates basic topological rules behind self-organization principia of protein interactomes and offers the conceptual basis to extend this theory to any class of complex networks. The link-reliability improvement, based on the mere topology, can impact many applied domains such as systems biology and network medicine.",
author = "Cannistraci, {Carlo Vittorio}",
year = "2018",
month = "10",
day = "25",
doi = "10.1038/s41598-018-33576-8",
language = "English",
volume = "8",
pages = "15760",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes

AU - Cannistraci, Carlo Vittorio

PY - 2018/10/25

Y1 - 2018/10/25

N2 - Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-reliability using exclusively topology are valuable in network biology, and their investigation facilitates the general understanding of topological mechanisms and models to draw and correct complex network connectivity. Here, I revise and extend the local-community-paradigm (LCP). Initially detected in brain-network topological self-organization and afterward generalized to any complex network, the LCP is a theory to model local-topology-dependent link-growth in complex networks using network automata. Four novel LCP-models are compared versus baseline local-topology-models. It emerges that the reliability of an interaction between two proteins is higher: (i) if their common neighbours are isolated in a complex (local-community) that has low tendency to interact with other external proteins; (ii) if they have a low propensity to link with other proteins external to the local-community. These two rules are mathematically combined in C1*: a proposed mechanistic model that, in fact, outperforms the others. This theoretical study elucidates basic topological rules behind self-organization principia of protein interactomes and offers the conceptual basis to extend this theory to any class of complex networks. The link-reliability improvement, based on the mere topology, can impact many applied domains such as systems biology and network medicine.

AB - Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-reliability using exclusively topology are valuable in network biology, and their investigation facilitates the general understanding of topological mechanisms and models to draw and correct complex network connectivity. Here, I revise and extend the local-community-paradigm (LCP). Initially detected in brain-network topological self-organization and afterward generalized to any complex network, the LCP is a theory to model local-topology-dependent link-growth in complex networks using network automata. Four novel LCP-models are compared versus baseline local-topology-models. It emerges that the reliability of an interaction between two proteins is higher: (i) if their common neighbours are isolated in a complex (local-community) that has low tendency to interact with other external proteins; (ii) if they have a low propensity to link with other proteins external to the local-community. These two rules are mathematically combined in C1*: a proposed mechanistic model that, in fact, outperforms the others. This theoretical study elucidates basic topological rules behind self-organization principia of protein interactomes and offers the conceptual basis to extend this theory to any class of complex networks. The link-reliability improvement, based on the mere topology, can impact many applied domains such as systems biology and network medicine.

U2 - 10.1038/s41598-018-33576-8

DO - 10.1038/s41598-018-33576-8

M3 - Article

C2 - 30361555

VL - 8

SP - 15760

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

ER -