Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: Understanding the osteolytic process triggered by altered lamins

Camilla Evangelisti, Pia Bernasconi, Paola Cavalcante, Cristina Cappelletti, Maria Rosaria D'Apice, Paolo Sbraccia, Giuseppe Novelli, Sabino Prencipe, Silvia Lemma, Nicola Baldini, Sofia Avnet, Stefano Squarzoni, Alberto M. Martelli, Giovanna Lattanzi

Research output: Contribution to journalArticle

Abstract

Transforming growth factor beta (TGFbeta) plays an essential role in bone homeostasis and deregulation of TGFbeta occurs in bone pathologies. Patients affected by Mandibuloacral Dysplasia (MADA), a progeroid disease linked to LMNA mutations, suffer from an osteolytic process. Our previous work showed that MADA osteoblasts secrete excess amount of TGFbeta 2, which in turn elicits differentiation of human blood precursors into osteoclasts. Here, we sought to determine how altered lamin A affects TGFbeta signaling. Our results show that wild-type lamin A negatively modulates TGFbeta 2 levels in osteoblast-like U2-OS cells, while the R527H mutated prelamin A as well as farnesylated prelamin A do not, ultimately leading to increased secretion of TGFbeta 2. TGFbeta 2 in turn, triggers the Akt/mTOR pathway and upregulates osteoprotegerin and cathepsin K. TGFbeta 2 neutralization rescues Akt/mTOR activation and the downstream transcriptional effects, an effect also obtained by statins or RAD001 treatment. Our results unravel an unexpected role of lamin A in TGFbeta 2 regulation and indicate rapamycin analogs and neutralizing antibodies to TGFbeta 2 as new potential therapeutic tools for MADA.

Original languageEnglish
Pages (from-to)7424-7437
Number of pages14
JournalOncotarget
Volume6
Issue number10
Publication statusPublished - 2015

    Fingerprint

Keywords

  • Akt signaling
  • Lamin A
  • Osteoclasts
  • RAD001
  • TGFbeta2

ASJC Scopus subject areas

  • Oncology

Cite this