Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein

C. Selvaggini, L. De Gioia, L. Cantu, E. Ghibaudi, L. Diomede, F. Passerini, G. Forloni, O. Bugiani, F. Tagliavini, M. Salmona

Research output: Contribution to journalArticle

Abstract

In the prion-related encephalopathies the prion protein is converted to an altered form, known as PrP(Sc), that is partially resistant to protease digestion. This abnormal isoform accumulates in the brain and its protease-resistant core aggregates extracellularly into amyloid fibrils. We have investigated the conformational properties, aggregation behaviour and sensitivity to protease digestion of a synthetic peptide homologous to residues 106-126 of human PrP, which was previously found to form amyloid-like fibrils in vitro and displayed neurotoxic activity toward primary cultures of rat hippocampal neurons. A scrambled sequence of peptide PrP 106-126 was used as a control. By circular dichroism, PrP 106-126 exhibited a secondary structure composed largely of β-sheet, whereas the scrambled sequence of PrP 106-126 showed a random coil structure. The β-sheet content of PrP 106-126 was much higher in 200 mM phosphate buffer at pH 5.0 than in the same buffer at pH 7.0. Laser light scatteering analysis showed that PrP 106-126 aggregated immediately after dissolution in 20 mM or 200 mM phosphate buffer, pH 5.0 and 7.0, whereas scrambled PrP 106-126 did not. PrP 106-126 aggregates had an average hydrodinamic diameter of 100 nm and an average molecular weight of 12 x 106 ± 30% Daltons, corresponding to the aggregation of 6000 ± 30% molecules. Peptide PrP 106-126 showed partial resistance to digestion with Proteinase K and Pronase, whereas scrambled PrP 106-126 was completely degraded by incubation with the enzymes at 37°C for 30 minutes.

Original languageEnglish
Pages (from-to)1380-1386
Number of pages7
JournalBiochemical and Biophysical Research Communications
Volume194
Issue number3
DOIs
Publication statusPublished - 1993

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Fingerprint Dive into the research topics of 'Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein'. Together they form a unique fingerprint.

  • Cite this