Molecular Profile of Advanced Non-Small Cell Lung Cancers in Octogenarians: The Door to Precision Medicine in Elderly Patients

Research output: Contribution to journalArticle

Abstract

BACKGROUND: There is a pressing need to expand the evidence base in geriatric lung oncology. Most non-small cell lung cancers (NSCLCs) are diagnosed in the elderly, with approximately 15% of cases affecting octogenarians. Treatment-related decisions are challenging in this population, and the role of biologically driven therapies is still underrated.

METHODS: A single-institution cohort of 76 NSCLCs from octogenarian patients was submitted to molecular analysis using a next-generation sequencing (NGS) multigene panel, fluorescence in situ hybridization (FISH) analyses, and immunohistochemistry for PD-L1 assessment. Treatment and clinical outcome data were available for 33 patients.

RESULTS: Most cases (n = 66, 87%) harbored at least one genomic alteration. EGFR and KRAS mutations were detected in 18 (24%) and 20 (26%) patients, respectively. No ALK alterations were found, but in two patients ROS1 translocation was identified. Of 22 cases tested, 17 were positive for PD-L1 staining. Octogenarian patients who received tyrosine kinase inhibitors (TKIs) based on molecular analysis showed clinical benefits, with long progression-free survival as expected in TKI-treated younger cohorts.

CONCLUSIONS: This study highlights the utility of molecular profiling in all advanced-stage NSCLCs, regardless of the age at diagnosis, to drive personalized treatment. The prevalence of druggable alterations and the clinical benefits obtained by biologically-driven therapies in octogenarians were comparable to those of the younger NSCLC population.

Original languageEnglish
JournalJournal of Clinical Medicine
Volume8
Issue number1
DOIs
Publication statusPublished - Jan 18 2019

Fingerprint Dive into the research topics of 'Molecular Profile of Advanced Non-Small Cell Lung Cancers in Octogenarians: The Door to Precision Medicine in Elderly Patients'. Together they form a unique fingerprint.

Cite this