Motor Recovery After Stroke: From a Vespa Scooter Ride Over the Roman Sampietrini to Focal Muscle Vibration (fMV) Treatment. A 99mTc-HMPAO SPECT and Neurophysiological Case Study

Massimiliano Toscano, Maria Ricci, Claudia Celletti, Marco Paoloni, Marco Ruggiero, Alessandro Viganò, Tommaso B. Jannini, Alberto Altarocca, Mauro Liberatore, Filippo Camerota, Vittorio Di Piero

Research output: Contribution to journalArticlepeer-review


Focal repetitive muscle vibration (fMV) is a safe and well-tolerated non-invasive brain and peripheral stimulation (NIBS) technique, easy to perform at the bedside, and able to promote the post-stroke motor recovery through conditioning the stroke-related dysfunctional structures and pathways. Here we describe the concurrent cortical and spinal plasticity induced by fMV in a chronic stroke survivor, as assessed with 99mTc-HMPAO SPECT, peripheral nerve stimulation, and gait analysis. A 72-years-old patient was referred to our stroke clinic for a right leg hemiparesis and spasticity resulting from a previous (4 years before) hemorrhagic stroke. He reported a subjective improvement of his right leg's spasticity and dysesthesia that occurred after a30-min ride on a Vespa scooter as a passenger over the Roman Sampietrini (i.e., cubic-shaped cobblestones). Taking into account both the patient's anecdote and the current guidelines that recommend fMV for the treatment of post-stroke spasticity, we then decided to start fMV treatment. 12 fMV sessions (frequency 100 Hz; amplitude range 0.2–0.5 mm, three 10-min daily sessions per week for 4 consecutive weeks) were applied over the quadriceps femoris, triceps surae, and hamstring muscles through a specific commercial device (Cro®System, NEMOCOsrl). A standardized clinical and instrumental evaluation was performed before (T0) the first fMV session and after (T1) the last one. After fMV treatment, we observed a clinically relevant motor and functional improvement, as assessed by comparing the post-treatment changes in the score of the Fugl-Meyer assessment, the Motricity Index score, the gait analysis, and the Ashworth modified scale, with the respective minimal detectable change at the 95% confidence level (MDC95). Data from SPECT and peripheral nerve stimulation supported the evidence of a concurrent brain and spinal plasticity promoted by fMV treatment trough activity-dependent changes in cortical perfusion and motoneuron excitability, respectively. In conclusion, the substrate of post-stroke motor recovery induced by fMV involves a concurrently acting multisite plasticity (i.e., cortical and spinal plasticity). In our patient, operant conditioning of both cortical perfusion and motoneuron excitability throughout a month of fMV treatment was related to a clinically relevant improvement in his strength, step symmetry (with reduced limping), and spasticity.

Original languageEnglish
Article number567833
JournalFrontiers in Neurology
Publication statusPublished - Nov 12 2020


  • brain plasticity
  • focal muscle vibration
  • motor recovery
  • spinal cord plasticity
  • stroke

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology


Dive into the research topics of 'Motor Recovery After Stroke: From a Vespa Scooter Ride Over the Roman Sampietrini to Focal Muscle Vibration (fMV) Treatment. A 99mTc-HMPAO SPECT and Neurophysiological Case Study'. Together they form a unique fingerprint.

Cite this