Abstract
Original language | English |
---|---|
Journal | British Journal of Radiology |
Volume | 89 |
Issue number | 1057 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- bone metastasis
- bone tumor
- clinical practice
- cortical bone
- gynecology
- high intensity focused ultrasound
- human
- minimally invasive procedure
- musculoskeletal disease
- nuclear magnetic resonance imaging
- patient monitoring
- radiotherapy
- Review
- temperature measurement
- ultrasound surgery
- urology
- interventional magnetic resonance imaging
- pathology
- Humans
- Magnetic Resonance Imaging, Interventional
- Musculoskeletal Diseases
- Ultrasonic Surgical Procedures
Fingerprint Dive into the research topics of 'MRI-guided focused ultrasound surgery in musculoskeletal diseases: The hot topics'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
MRI-guided focused ultrasound surgery in musculoskeletal diseases: The hot topics. / Bazzocchi, A.; Napoli, A.; Sacconi, Beatrice; Battista, G.; Guglielmi, G.; Catalano, C.; Albisinni, U.
In: British Journal of Radiology, Vol. 89, No. 1057, 2015.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - MRI-guided focused ultrasound surgery in musculoskeletal diseases: The hot topics
AU - Bazzocchi, A.
AU - Napoli, A.
AU - Sacconi, Beatrice
AU - Battista, G.
AU - Guglielmi, G.
AU - Catalano, C.
AU - Albisinni, U.
N1 - Cited By :1 Export Date: 22 March 2017 CODEN: BJRAA Correspondence Address: Bazzocchi, A.; Diagnostic and Interventional Radiology, Rizzoli Orthopaedic InstituteItaly; email: abazzo@inwind.it References: Napoli, A., Anzidei, M., Ciolina, F., Marotta, E., Cavallo Marincola, B., Brachetti, G., MR-guided high-intensity focused ultrasound: Current status of an emerging technology (2013) Cardiovasc Intervent Radiol, 36, pp. 1190-1203; Richards, W.T., Loomis, A.L., The chemical effects of high frequency sound waves I. A preliminary survey (1927) J Am Chem Soc, 49, pp. 3086-3100; Ter Haar, G., Therapeutic applications of ultrasound (2007) Prog Biophys Mol Biol, 93, pp. 111-129; Mason, T.J., Therapeutic ultrasound an overview (2011) Ultrason Sonochem, 18, pp. 847-852; Miller, D.L., Smith, N.B., Bailey, M.R., Czarnota, G.J., Hynynen, K., Makin, I.R., Overview of therapeutic ultrasound applications and safety considerations (2012) J Ultrasound Med, 31, pp. 623-634; Kennedy, J.E., Ter Haar, G.R., Cranston, D., High intensity focused ultrasound: Surgery of the future? (2003) Br J Radiol, 76, pp. 590-599; Haar, G.T., Coussios, C., High intensity focused ultrasound: Physical principles and devices (2007) Int J Hyperthermia, 23, pp. 89-104; Haar, G.T., Coussios, C., High intensity focused ultrasound: Past, present and future (2007) Int J Hyperthermia, 23, pp. 85-87; Yang, X., Roy, R.A., Holt, R.G., Bubble dynamics and size distributions during focused ultrasound insonation (2004) J Acoust Soc Am, 116, pp. 3423-3431; Napoli, A., Anzidei, M., Marincola, B.C., Brachetti, G., Ciolina, F., Cartocci, G., Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound (2013) Invest Radiol, 48, pp. 351-358; Hurwitz, M.D., Ghanouni, P., Kanaev, S.V., Iozeffi, D., Gianfelice, D., Fennessy, F.M., Magnetic resonance-guided focused ultra sound for patients with painful bone metastases: Phase III trial results (2014) J Natl Cancer Inst, 106; Cline, H.E., Schenck, J.F., Hynynen, K., Watkins, R.D., Souza, S.P., Jolesz, F.A., MR-guided focused ultrasound surgery (1992) J Comput Assist Tomogr, 16, pp. 956-965; Cline, H.E., Schenck, J.F., Watkins, R.D., Hynynen, K., Jolesz, F.A., Magnetic resonance-guided thermal surgery (1993) Magn Reson Med, 30, pp. 98-106; Hynynen, K., Darkazanli, A., Unger, E., Schenck, J.F., MRI-guided noninvasive ultrasound surgery (1993) Med Phys, 20, pp. 107-115; Hynynen, K., Pomeroy, O., Smith, D.N., Huber, P.E., McDannold, N.J., Kettenbach, J., MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: A feasibility study (2001) Radiology, 219, pp. 176-185; Hindley, J., Gedroyc, W.M., Regan, L., Stewart, E., Tempany, C., Hynyen, K., MRI guidance of focused ultrasound therapy of uterine fibroids: Early results (2004) AJR Am J Roentgenol, 183, pp. 1713-1719; Wang, Z., Baij Li, F., Du, Y., Wen, S., Hu, K., Study of a "biological focal region" of high-intensity focused ultrasound (2003) Ultrasound Med Biol, 29, pp. 749-754; Hill, C.R., Rivens, I., Vaughan, M.G., Ter Haar, G.R., Lesion development in focused ultrasound surgery: A general model (1994) Ultrasound Med Biol, 20, pp. 259-269; Liu, X., Li, J., Gong, X., Zhang, D., Nonlinear absorption in biological tissue for high intensity focused ultrasound (2006) Ultrasonics, 44, pp. e27-30; Choi, J.W., Lee, J.Y., Hwang, E.J., Hwang, I., Woo, S., Lee, C.J., Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: A preclinical study in pigs (2014) Ultrasonography, 33, pp. 191-199; Arvanitis, C.D., McDannold, N., Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies (2013) Med Phys, 40, p. 112901; Sherwood, V., Civale, J., Development of a hybrid magnetic resonance and ultrasound imaging system (2014) Biomed Res Int, 2014, p. 914347; Yiallouras, C., Damianou, C., Review of MRI positioning devices for guiding focused ultrasound systems (2015) Int J Med Robot, 11, pp. 247-255; Noorda, Y.H., Bartels, L.W., Huisman, M., Nijenhuis, R.J., Van Den Bosch, M.A., Pluim, J.P., Registration of CT to pre-treatment MRI for planning of MR-HIFU ablation treatment of painful bone metastases (2014) Phys Med Biol, 59, pp. 4167-4179; Schlesinger, D., Benedict, S., Diederich, C., Gedroyc, W., Klibanov, A., Larner, J., MR-guided focused ultrasound surgery, present and future (2013) Med Phys, 40, p. 080901; Ellis, S., Rieke, V., Kohi, M., Westphalen, A.C., Clinical applications for magnetic resonance guided high intensity focused ultrasound (MRgHIFU): Present and future (2013) J Med Imaging Radiat Oncol, 57, pp. 391-399; Maloney, E., Hwang, J.H., Emerging HIFU applications in cancer therapy (2015) Int J Hyper-thermia, 31, pp. 302-309; Cavallo Marincola, B., Pediconi, F., Anzidei, M., Miglio, E., Di Mare, L., Telesca, M., High-intensity focused ultrasound in breast pathology: Non-invasive treatment of benign and malignant lesions (2015) Expert Rev Med Devices, 12, pp. 191-199; Anzidei, M., Marincola, B.C., Bezzi, M., Brachetti, G., Nudo, F., Cortesi, E., Magnetic resonance-guided high-intensity focused ultrasound treatment of locally advanced pancreatic adenocarcinoma: Preliminary experience for pain palliation and local tumor control (2014) Invest Radiol, 49, pp. 759-765; Aubry, J.F., Pauly, K.B., Moonen, C., Haar, G.T., Ries, M., Salomir, R., The road to clinical use of high-intensity focused ultrasound for liver cancer: Technical and clinical consensus (2013) J Ther Ultrasound, 1, p. 13; Napoli, A., Anzidei, M., De Nunzio, C., Cartocci, G., Panebianco, V., De Dominicis, C., Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: Preliminary experience (2013) Eur Urol, 63, pp. 395-398; Elias, W.J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., A pilot study of focused ultrasound thalamotomy for essential tremor (2013) N Engl J Med, 369, pp. 640-648; Froling, V., Kroncke, T.J., Schreiter, N.F., Scheurig-Muenkler, C., Collettini, F., Hamm, B., Technical eligibility for treatment of magnetic resonance-guided focused ultrasound surgery (2014) Cardiovasc Intervent Radiol, 37, pp. 445-450; Chen, L., Ter Haar, G., Hill, C.R., Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions (1997) Ultrasound Med Biol, 23, pp. 921-931; Hallaj, I.M., Cleveland, R.O., Hynynen, K., Simulations of the thermo-acoustic lens effect during focused ultrasound surgery (2001) J Acoust Soc Am, 109, pp. 2245-2253; Miller, N.R., Bograchev, K.M., Bamber, J.C., Ultrasonic temperature imaging for guiding focused ultrasound surgery: Effect of angle between imaging beam and therapy beam (2005) Ultrasound Med Biol, 31, pp. 401-413; Fry, F.J., Transkull transmission of an intense focused ultrasonic beam (1977) Ultrasound Med Biol, 3, pp. 179-184; Tobias, J., Hynynen, K., Roemer, R., Guthkelch, A.N., Fleischer, A.S., Shively, J., An ultrasound window to perform scanned, focused ultrasound hyperthermia treatments of brain tumors (1987) Med Phys, 14, pp. 228-234; Lipsman, N., Mainprize, T.G., Schwartz, M.L., Hynynen, K., Lozano, A.M., Intracranial applications of magnetic resonance-guided focused ultrasound (2014) Neurotherapeutics, 11, pp. 593-605; Monteith, S.J., Kassell, N.F., Goren, O., Harnof, S., Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of in-tracerebral hemorrhage (2013) Neurosurg Focus, 34, p. E14; Holscher, T., Ahadi, G., Fisher, D., Zadicario, E., Voie, A., MR-guided focused ultrasound for acute stroke: A rabbit model (2013) Stroke, 44 (6), pp. S58-60; Wijlemans, J.W., De Greef, M., Schubert, G., Moonen, C.T., Van Den Bosch, M.A., Ries, M., Intrapleural fluid infusion for MR-guided high-intensity focused ultrasound ablation in the liver dome (2014) Acad Radiol, 21, pp. 1597-1602; Henderson, P.W., Lewis, G.K., Shaikh, N., Sohn, A., Weinstein, A.L., Olbricht, W.L., A portable high-intensity focused ultrasound device for noninvasive venous ablation (2010) J Vasc Surg, 51, pp. 707-711; Robinson, D.M., Kaminer, M.S., Baumann, L., Burns, A.J., Brauer, J.A., Jewell, M., High-intensity focused ultrasound for the reduction of subcutaneous adipose tissue using multiple treatment techniques (2014) Der-matol Surg, 40, pp. 641-651; Mindjuk, I., Trumm, C.G., Herzog, P., Stahl, R., Matzko, M., MRI predictors of clinical success in MR-guided focused ultrasound (MRgFUS) treatments of uterine fibroids: Results from a single centre (2015) Eur Radiol, 25, pp. 1317-1328; Luo, J., Ren, X., Yu, T., Efficacy of extracorpo-real ultrasound-guided high intensity focused ultrasound: An evaluation based on controlled trials in China (2015) Int J Radiat Biol, 95, pp. 480-485; Jolesz, F.A., McDannold, N., Current status and future potential of MRI-guided focused ultrasound surgery (2008) J Magn Reson Imaging, 27, pp. 391-399; Jolesz, F.A., MRI-guided focused ultrasound surgery (2009) Annu Rev Med, 60, pp. 417-430; Hynynen, K., MRI-guided focused ultrasound treatments (2010) Ultrasonics, 50, pp. 221-229; Hynynen, K., MRIgHIFU: A tool for image-guided therapeutics (2011) J Magn Reson Imaging, 34, pp. 482-493; Li, D., Shen, G., Bai, J., Chen, Y., Focus shift and phase correction in soft tissues during focused ultrasound surgery (2011) IEEE Trans Biomed Eng, 58, pp. 1621-1628; Ritchie, R., Collin, J., Coussios, C., Leslie, T., Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat (2013) Ultrasound Med Biol, 39, pp. 1785-1793; Kun, G., Wan, M., Effects of fascia lata on HIFU lesioning in vitro (2004) Ultrasound Med Biol, 30, pp. 991-998; Cline, H.E., Hynynen, K., Hardy, C.J., Watkins, R.D., Schenck, J.F., Jolesz, F.A., MR temperature mapping of focused ultrasound surgery (1994) Magn Reson Med, 31, pp. 628-636; Hardy, C.J., Cline, H.E., Watkins, R.D., One-dimensional NMR thermal mapping of focused ultrasound surgery (1994) J Comput Assist Tomogr, 18, pp. 476-483; Hindman, J.C., Proton resonance shift of water in the gas and liquid states (1996) J Chem Phys, 44, p. 4582; Ishihara, Y., Calderon, A., Watanabe, H., Okamoto, K., Suzuki, Y., Kuroda, K., A precise and fast temperature mapping using water proton chemical shift (1995) Magn Reson Med, 34, pp. 814-823; De Poorter, J., De Wagter, C., De Deene, Y., Thomsen, C., Stahlberg, F., Achten, E., Non-invasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle (1995) Magn Reson Med, 33, pp. 74-81; Baron, P., Deckers, R., De Greef, M., Merckel, L.G., Bakker, C.J., Bouwman, J.G., Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat (2014) Magn Reson Med, 72, pp. 1580-1589; Petrusca, L., Auboiroux, V., Goget, T., Viallon, M., Muller, A., Gross, P., A nonpara-metric temperature controller with nonlinear negative reaction for multi-point rapid MR-guided HIFU ablation (2014) IEEE Trans Med Imaging, 33, pp. 1324-1337; Viallon, M., Petrusca, L., Auboiroux, V., Goget, T., Baboi, L., Becker, C.D., Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation (2013) Ultrasound Med Biol, 39, pp. 1580-1595; Todd, N., Vyas, U., De Bever, J., Payne, A., Parker, D.L., Reconstruction of fully three-dimensional high spatial and temporal resolution MR temperature maps for retrospective applications (2012) Magn Reson Med, 67, pp. 724-730; Todd, N., Prakash, J., Odeen, H., De Bever, J., Payne, A., Yalavarthy, P., Toward realtime availability of 3D temperature maps created with temporally constrained reconstruction (2014) Magn Reson Med, 71, pp. 1394-1404; Ramsay, E., Mougenot, C., Kazem, M., Laetsch, T.W., Chopra, R., Temperature-dependent MR signals in cortical bone: Potential for monitoring temperature changes during high-intensity focused ultrasound treatment in bone (2015) Magn Reson Med, 74, pp. 1095-1102; Baron, P., Ries, M., Deckers, R., De Greef, M., Tanttu, J., Kohler, M., In vivo T2-based MR thermometry in adipose tissue layers for high-intensity focused ultrasound near-field monitoring (2014) Magn Reson Med, 72, pp. 1057-1064; Weiss, N., Sosna, J., Goldberg, S.N., Azhari, H., Non-invasive temperature monitoring and hyperthermic injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue (2014) Int J Hyperthermia, 30, pp. 119-125; Diakite, M., Odeen, H., Todd, N., Payne, A., Parker, D.L., Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method (2014) Magn Reson Med, 72, pp. 178-187; Dillon, C.R., Payne, A., Christensen, D.A., Roemer, R.B., The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods (2014) Int J Hy-perthermia, 30, pp. 362-371; Auboiroux, V., Viallon, M., Roland, J., Hyacinthe, J.N., Petrusca, L., Morel, D.R., ARFI-prepared MRgHIFU in liver: Simultaneous mapping of ARFI-displacement and temperature elevation, using a fast GRE-EPI sequence (2012) Magn Reson Med, 68, pp. 932-946; Celicanin, Z., Auboiroux, V., Bieri, O., Petrusca, L., Santini, F., Viallon, M., Real-time method for motion-compensated MR thermometry and MRgHIFU treatment in abdominal organs (2014) Magn Reson Med, 72, pp. 1087-1095; Fite, B.Z., Wong, A., Liu, Y., Mahakian, L.M., Tam, S.M., Aina, O., Magnetic resonance imaging assessment of effective ablated volume following high intensity focused ultrasound (2015) PLoS One, 10, p. e0120037; Wintermark, M., Huss, D.S., Shah, B.B., Tustison, N., Druzgal, T.J., Kassell, N., Thalamic connectivity in patients with essential tremor treated with MR imaging-guided focused ultrasound: In vivo fiber tracking by using diffusion-tensor MR imaging (2014) Radiology, 272, pp. 202-209; Masciocchi, C., Conchiglia, A., Gregori, L.M., Arrigoni, F., Zugaro, L., Barile, A., Critical role of HIFU in musculoskeletal interventions (2014) Radiol Med, 119, pp. 470-475; Botsa, E., Mylona, S., Koutsogiannis, I., Koundouraki, A., Thanos, L., CT image guided thermal ablation techniques for palliation of painful bone metastases (2014) Ann Palliat Med, 3, pp. 47-53; Rodrigues, D.B., Stauffer, P.R., Vrba, D., Hurwitz, M.D., Focused ultrasound for treatment of bone tumours (2015) Int J Hyper-thermia, pp. 1-12; Napoli, A., Anzidei, M., Marincola, B.C., Brachetti, G., Noce, V., Boni, F., MR imaging-guided focused ultrasound for treatment of bone metastasis (2013) Radiographics, 33, pp. 1555-1568; Carter, J.A., Ji, X., Botteman, M.F., Clinical, economic and humanistic burdens of skeletal-related events associated with bone metastases (2013) Expert Rev Pharmacoecon Outcomes Res, 13, pp. 483-496; Suva, L.J., Washam, C., Nicholas, R.W., Griffin, R.J., Bone metastasis: Mechanisms and therapeutic opportunities (2011) Nat Rev Endo-crinol, 7, pp. 208-218; Hechmati, G., Cure, S., Gouepo, A., Hoefeler, H., Lorusso, V., Luftner, D., Cost of skeletal-related events in European patients with solid tumours and bone metastases: Data from a prospective multinational observational study (2013) J Med Econ, 16, pp. 691-700; Rades, D., Schild, S.E., Abrahm, J.L., Treatment of painful bone metastases (2010) Nat Rev Clin Oncol, 7, pp. 220-229; Liberman, B., Gianfelice, D., Inbar, Y., Beck, A., Rabin, T., Shabshin, N., Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A mul-ticenter study (2009) Ann Surg Oncol, 16, pp. 140-146; Catane, R., Beck, A., Inbar, Y., Rabin, T., Shabshin, N., Hengst, S., MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases-preliminary clinical experience (2007) Ann Oncol, 18, pp. 163-167; Gianfelice, D., Gupta, C., Kucharczyk, W., Bret, P., Havill, D., Clemons, M., Palliative treatment of painful bone metastases with MR imaging-guided focused ultrasound (2008) Radiology, 249, pp. 355-363; Huisman, M., Ter Haar, G., Napoli, A., Hananel, A., Ghanouni, P., Lovey, G., International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions (2015) Int J Hyperthermia, 31, pp. 251-259; Mavrogenis, A.F., Angelini, A., Vottis, C., Pala, E., Calabro, T., Papagelopoulos, P.J., Modern palliative treatments for metastatic bone disease: Awareness of merits, demerits and guidance (2015) Clin J Pain, , Epub ahead of print; Huisman, M., Lam, M.K., Bartels, L.W., Nijenhuis, R.J., Moonen, C.T., Knuttel, F.M., Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases (2014) J Ther Ultrasound, 2, p. 16; Joo, B., Park, M.S., Lee, S.H., Choi, H.J., Lim, S.T., Rha, S.Y., Pain palliation in patients with bone metastases using magnetic resonance-guided focused ultrasound with conformal bone system: A preliminary report (2015) Yonsei Med J, 56, pp. 503-509; Wu, F., Wang, Z.B., Chen, W.Z., Zou, J.Z., Bai, J., Zhu, H., Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: Early Chinese clinical experience (2004) Ultrasound Med Biol, 30, pp. 245-260; Li, C., Wu, P., Zhang, L., Fan, W., Huang, J., Zhang, F., Osteosarcoma: Limb salvaging treatment by ultrasonographically guided high-intensity focused ultrasound (2009) Cancer Biol Ther, 8, pp. 1102-1108; Li, C., Zhang, W., Fan, W., Huang, J., Zhang, F., Wu, P., Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound (2010) Cancer, 116, pp. 3934-3942; Wang, Y., Wang, W., Tang, J., Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation (2013) Int J Hyperthermia, 29, pp. 683-687; Chen, W., Zhu, H., Zhang, L., Li, K., Su, H., Jin, C., Primary bone malignancy: Effective treatment with high-intensity focused ultrasound ablation (2010) Radiology, 255, pp. 967-978; Bielack, S.S., Marina, N., Bernstein, M., High-intensity focused ultrasound (HIFU) is not indicated for treatment of primary bone sarcomas (2011) Cancer, 117, p. 2822. , author reply 22-3; Napoli, A., Mastantuono, M., Cavallo Marincola, B., Anzidei, M., Zaccagna, F., Moreschini, O., Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment (2013) Radiology, 267, pp. 514-521; Geiger, D., Napoli, A., Conchiglia, A., Gregori, L.M., Arrigoni, F., Bazzocchi, A., MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: A prospective multicenter evaluation (2014) J Bone Joint Surg Am, 96, pp. 743-751; Neogi, T., The epidemiology and impact of pain in osteoarthritis (2013) Osteoarthritis Cartilage, 21, pp. 1145-1153; (2014) Osteoarthritis: Care and Management in Adults, , London, UK: National Institute for Health and Care Excellence; Hunter, D.J., Guermazi, A., Roemer, F., Zhang, Y., Neogi, T., Structural correlates of pain in joints with osteoarthritis (2013) Osteoarthritis Cartilage, 21, pp. 1170-1178; Weeks, E.M., Platt, M.W., Gedroyc, W., MRI-guided focused ultrasound (MRgFUS) to treat facet joint osteoarthritis low back pain-case series of an innovative new technique (2012) Eur Radiol, 22, pp. 2822-2835; Izumi, M., Ikeuchi, M., Kawasaki, M., Ushida, T., Morio, K., Namba, H., MR-guided focused ultrasound for the novel and innovative management of osteoarthritic knee pain (2013) BMC Musculoskelet Disord, 14, p. 267; Palazzo, C., Ravaud, J.F., Papelard, A., Ravaud, P., Poiraudeau, S., The burden of musculoskel-etal conditions (2014) PLoS One, 9, p. e90633; Harnof, S., Zibly, Z., Shay, L., Dogadkin, O., Hanannel, A., Inbar, Y., Magnetic resonance-guided focused ultrasound treatment of facet joint pain: Summary of preclinical phase (2014) J Ther Ultrasound, 2, p. 9; Wang, Y., Wang, W., Tang, J., Ultrasound-guided high intensity focused ultrasound treatment for extra-abdominal desmoid tumours: Preliminary results (2011) Int J Hyper-thermia, 27, pp. 648-653; Orgera, G., Monfardini, L., Della Vigna, P., Zhang, L., Bonomo, G., Arnone, P., High-intensity focused ultrasound (HIFU) in patients with solid malignancies: Evaluation of feasibility, local tumour response and clinical results (2011) Radiol Med, 116, pp. 734-748; Hu, X., Cai, H., Zhou, M., He, H., Tian, W., Hu, Y., New clinical application of high-intensity focused ultrasound: Local control of synovial sarcoma (2013) World J Surg Oncol, 11, p. 265; Fu, S.Z., Wang, B., Huang, H.P., Huang, L.L., Clinical study on hemangiomas treatment with high-intensity focused ultrasound (60 cases). [In Chinese.] (2012) Zhonghua Zheng Xing Wai Ke Za Zhi, 28, pp. 252-255; Hoogenboom, M., Eikelenboom, D., Den Brok, M.H., Heerschap, A., Futterer, J.J., Adema, G.J., Mechanical high-intensity focused ultrasound destruction of soft tissue: Working mechanisms and physiologic effects (2015) Ultrasound Med Biol, 41, pp. 1500-1517; Khokhlova, T.D., Canney, M.S., Khokhlova, V.A., Sapozhnikov, O.A., Crum, L.A., Bailey, M.R., Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling (2011) J Acoust Soc Am, 130, pp. 3498-3510; Kopelman, D., Inbar, Y., Hanannel, A., Pfeffer, R.M., Dogadkin, O., Freundlich, D., Magnetic resonance guided focused ultrasound surgery. Ablation of soft tissue at bone-muscle interface in a porcine model (2008) Eur J Clin Invest, 38, pp. 268-275; Hipp, E., Partanen, A., Karczmar, G.S., Fan, X., Safety limitations of MR-HIFU treatment near interfaces: A phantom validation (2012) J Appl Clin Med Phys, 13, p. 3739; Lele, P.P., Parker, K.J., Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound (1982) Br J Cancer Suppl, 5, pp. 108-121; Hynynen, K., DeYoung, D., Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia (1988) Int J Hyperthermia, 4, pp. 267-279; O'Neill, T.P., Winkler, A.J., Wu, J., Ultrasound heating in a tissue-bone phantom (1994) Ultrasound Med Biol, 20, pp. 579-588; Myers, M.R., Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface (2004) J Acoust Soc Am, 115, pp. 2887-2891; Bucknor, M.D., Rieke, V., Do, L., Majumdar, S., Link, T.M., Saeed, M., MRI-guided high-intensity focused ultrasound ablation of bone: Evaluation of acute findings with MR and CT imaging in a swine model (2014) J Magn Reson Imaging, 40, pp. 1174-1180; Bucknor, M.D., Rieke, V., Seo, Y., Horvai, A.E., Hawkins, R.A., Majumdar, S., Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: Evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model (2015) Radiology, 274, pp. 387-394; Herman, A., Avivi, E., Brosh, T., Schwartz, I., Liberman, B., Biomechanical properties of bone treated by magnetic resonance-guided focused ultrasound-an in vivo porcine model study (2013) Bone, 57, pp. 92-97; Smith, N.B., Temkin, J.M., Shapiro, F., Hynynen, K., Thermal effects of focused ultrasound energy on bone tissue (2001) Ultrasound Med Biol, 27, pp. 1427-1433; Zhang, S., Li, C., Yin, H., Wang, S., Wan, M., Surface vibration and nearby cavitation of an ex vivo bovine femur exposed to high intensity focused ultrasound (2013) J Acoust Soc Am, 134, pp. 1656-1662; Hundt, W., Yuh, E.L., Steinbach, S., Bednarski, M.D., Guccione, S., Comparison of continuous vs. Pulsed focused ultrasound in treated muscle tissue as evaluated by magnetic resonance imaging, histological analysis, and microarray analysis (2008) Eur Radiol, 18, pp. 993-1004; Solomon, S.B., Nicol, T.L., Chan, D.Y., Fjield, T., Fried, N., Kavoussi, L.R., Histologic evolution of high-intensity focused ultrasound in rabbit muscle (2003) Invest Radiol, 38, pp. 293-301; Hundt, W., Yuh, E.L., Steinbach, S., Bednarski, M.D., Guccione, S., Mechanic effect of pulsed focused ultrasound in tumor and muscle tissue evaluated by MRI, histology, and microarray analysis (2010) Eur J Radiol, 76, pp. 279-287; Zhang, J., Mougenot, C., Partanen, A., Muthupillai, R., Hor, P.H., Volumetric MRI-guided high-intensity focused ultrasound for noninvasive, in vivo determination of tissue thermal conductivity: Initial experience in a pig model (2013) J Magn Reson Imaging, 37, pp. 950-957; Vasquez, B., Navarrete, J., Farfan, E., Cantin, M., Effect of pulsed and continuous therapeutic ultrasound on healthy skeletal muscle in rats (2014) Int J Clin Exp Pathol, 7, pp. 779-783; Muratore, R., Akabas, T., Muratore, I.B., High-intensity focused ultrasound ablation of ex vivo bovine achilles tendon (2008) Ultrasound Med Biol, 34, pp. 2043-2050; Foldes, K., Hynynen, K., Shortkroff, S., Winalski, C.S., Collucci, V., Koskinen, S.K., Magnetic resonance imaging-guided focused ultrasound synovectomy (1999) Scand J Rheumatol, 28, pp. 233-237; O'Daly, B.J., Morris, E., Gavin, G.P., O'Keane, C., O'Byrne, J.M., McGuinness, G.B., High power, low frequency ultrasound: Meniscal tissue interaction and ablation characteristics (2011) Ultrasound Med Biol, 37, pp. 556-567; Forslund, C., Persson, J., Stromqvist, B., Lidgren, L., McCarthy, I.D., Effects of high-intensity focused ultrasound on the in-tervertebral disc: A potential therapy for disc herniations (2006) J Clin Ultrasound, 34, pp. 330-338; Persson, J., Stromqvist, B., Zanoli, G., McCarthy, I., Lidgren, L., Ultrasound nucle-olysis: An in vitro study (2002) Ultrasound Med Biol, 28, pp. 1189-1197; Jung, Y.J., Kim, R., Ham, H.J., Park, S.I., Lee, M.Y., Kim, J., Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation (2015) Ultrasound Med Biol, 41, pp. 999-1007; Poliachik, S.L., Khokhlova, T.D., Wang, Y.N., Simon, J.C., Bailey, M.R., Pulsed focused ultrasound treatment of muscle mitigates paralysis-induced bone loss in the adjacent bone: A study in a mouse model (2014) Ultrasound Med Biol, 40, pp. 2113-2124; Kyriakou, Z., Corral-Baques, M.I., Amat, A., Coussios, C.C., HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat (2011) Ultrasound Med Biol, 37, pp. 568-579; Young, R.R., Henneman, E., Functional effects of focused ultrasound on mammalian nerves (1961) Science, 134, pp. 1521-1522; Ballantine, H.T., Jr., Hueter, T.F., Nauta, W.J., Sosa, D.M., Focal destruction of nervous tissue by focused ultrasound: Biophysical factors influencing its application (1956) J Exp Med, 104, pp. 337-360; Mihran, R.T., Barnes, F.S., Wachtel, H., Transient modification of nerve excitability in vitro by single ultrasound pulses (1990) Biomed Sci Instrum, 26, pp. 235-246; Colucci, V., Strichartz, G., Jolesz, F., Vykhodt-Seva, N., Hynynen, K., Focused ultrasound effects on nerve action potential in vitro (2009) Ultrasound Med Biol, 35, pp. 1737-1747; Foley, J.L., Little, J.W., Vaezy, S., Effects of high-intensity focused ultrasound on nerve conduction (2008) Muscle Nerve, 37, pp. 241-250; Lee, Y.F., Lin, C.C., Cheng, J.S., Chen, G.S., High-intensity focused ultrasound attenuates neural responses of sciatic nerves isolated from normal or neuropathic rats (2015) Ultrasound Med Biol, 41, pp. 132-142; Juan, E.J., Gonzalez, R., Albors, G., Ward, M.P., Irazoqui, P., Vagus nerve modulation using focused pulsed ultrasound: Potential applications and preliminary observations in a rat (2014) Int J Imaging Syst Technol, 24, pp. 67-71; Gulati, A., Loh, J., Gutta, N.B., Ezell, P.C., Monette, S., Erinjeri, J.P., Novel use of noninvasive high-intensity focused ultraso-nography for intercostal nerve neurolysis in a swine model (2014) Reg Anesth Pain Med, 39, pp. 26-30; Ishikawa, T., Okai, T., Sasaki, K., Umemura, S., Fujiwara, R., Kushima, M., Functional and histological changes in rat femoral arteries by HIFU exposure (2003) Ultrasound Med Biol, 29, pp. 1471-1477; Li, T., Hao, Q., Wang, X., Liu, Q., The effect of focused ultrasound on the physicochemical properties of Sarcoma 180 cell membrane. [in Chinese.] (2009) Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 26, pp. 941-946; Chida, S., Okada, K., Suzuki, N., Komori, C., Shimada, Y., Infiltration by macrophages and lymphocytes in transplantable mouse sarcoma after irradiation with high-intensity focused ultrasound (2009) Anticancer Res, 29, pp. 3877-3882; Weber-Adrian, D., Thevenot, E., O'Reilly, M.A., Oakden, W., Akens, M.K., Ellens, N., Gene delivery to the spinal cord using MRI-guided focused ultrasound (2015) Gene Ther, 22, pp. 568-577; Hijnen, N., Langereis, S., Grull, H., Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery (2014) Adv Drug Deliv Rev, 72, pp. 65-81; Ranjan, A., Jacobs, G.C., Woods, D.L., Negussie, A.H., Partanen, A., Yarmolenko, P.S., Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive lip-osomes in a rabbit Vx2 tumor model (2012) J Control Release, 158, pp. 487-494; Okita, K., Sugiyama, K., Takagi, S., Matsumto, Y., Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement (2013) J Acoust Soc Am, 134, pp. 1576-1585; Lorenzato, C., Cernicanu, A., Meyre, M.E., Germain, M., Pottier, A., Levy, L., MRI contrast variation of thermosensitive mag-netoliposomes triggered by focused ultrasound: A tool for image-guided local drug delivery (2013) Contrast Media Mol Imaging, 8, pp. 185-192; Choi, S.Y., Kim, Y.S., Seo, Y.J., Yang, J., Choi, K.S., Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation (2012) PLoS One, 7, p. e34333; Park, J., Zhang, Y., Vykhodtseva, N., Jolesz, F.A., McDannold, N.J., The kinetics of blood brain barrier permeability and targeted doxoru-bicin delivery into brain induced by focused ultrasound (2012) J Control Release, 162, pp. 134-142; De Smet, M., Hijnen, N.M., Langereis, S., Elevelt, A., Heijman, E., Dubois, L., Magnetic resonance guided high-intensity focused ultrasound mediated hyperther-mia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin (2013) Invest Radiol, 48, pp. 395-405; Carlisle, R., Choi, J., Bazan-Peregrino, M., Laga, R., Subr, V., Kostka, L., Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound (2013) J Natl Cancer Inst, 105, pp. 1701-1710; O'Neill, B.E., Karmonik, C., Sassaroli, E., Li, K.C., Estimation of thermal dose from MR thermometry during application of non-ablative pulsed high intensity focused ultrasound (2012) J Magn Reson Imaging, 35, pp. 1169-1178; Staruch, R., Chopra, R., Hynynen, K., Hyper-thermia in bone generated with MR imaging-controlled focused ultrasound: Control strategies and drug delivery (2012) Radiology, 263, pp. 117-127; Tang, W., Liu, Q., Wang, X., Wang, P., Zhang, J., Cao, B., Potential mechanism in sonody-namic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro (2009) Ultrasonics, 49, pp. 786-793; O'Neill, B.E., Vo, H., Angstadt, M., Li, K.P., Quinn, T., Frenkel, V., Pulsed high intensity focused ultrasound mediated nanoparticle delivery: Mechanisms and efficacy in mu-rine muscle (2009) Ultrasound Med Biol, 35, pp. 416-424; Sacks, D., McClenny, T.E., Cardella, J.F., Lewis, C.A., Society of Interventional Radiology clinical practice guidelines (2003) J Vasc Interv Radiol, 14, pp. S199-202; Yu, T., Luo, J., Adverse events of extracorpo-real ultrasound-guided high intensity focused ultrasound therapy (2011) PLoS One, 6, p. e26110; Grassi, D.G., Gavier, B., Trucco, J., Bana, M.T., Acute pancreatitis after high-intensity focused ultrasonography for body sculpting (2014) Ann Intern Med, 160, p. 71; Hijnen, N.M., Elevelt, A., Grull, H., Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy (2013) Invest Radiol, 48, pp. 517-524
PY - 2015
Y1 - 2015
N2 - MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences. © 2015 The Authors. Published by the British Institute of Radiology.
AB - MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences. © 2015 The Authors. Published by the British Institute of Radiology.
KW - bone metastasis
KW - bone tumor
KW - clinical practice
KW - cortical bone
KW - gynecology
KW - high intensity focused ultrasound
KW - human
KW - minimally invasive procedure
KW - musculoskeletal disease
KW - nuclear magnetic resonance imaging
KW - patient monitoring
KW - radiotherapy
KW - Review
KW - temperature measurement
KW - ultrasound surgery
KW - urology
KW - interventional magnetic resonance imaging
KW - pathology
KW - Humans
KW - Magnetic Resonance Imaging, Interventional
KW - Musculoskeletal Diseases
KW - Ultrasonic Surgical Procedures
U2 - 10.1259/bjr.20150358
DO - 10.1259/bjr.20150358
M3 - Article
VL - 89
JO - British Journal of Radiology
JF - British Journal of Radiology
SN - 0007-1285
IS - 1057
ER -