Multi-branch convolutional neural network for multiple sclerosis lesion segmentation

Shahab Aslani, Michael Dayan, Loredana Storelli, Massimo Filippi, Vittorio Murino, Maria A. Rocca, Diego Sona

Research output: Contribution to journalArticlepeer-review


In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.

Original languageEnglish
Pages (from-to)1-15
Number of pages15
Publication statusPublished - Aug 1 2019


  • Brain
  • Convolutional neural network
  • Lesions
  • Multiple image modality
  • Multiple sclerosis
  • Segmentation

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Multi-branch convolutional neural network for multiple sclerosis lesion segmentation'. Together they form a unique fingerprint.

Cite this