Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T

Guido Buonincontri, Laura Biagi, Alessandra Retico, Paolo Cecchi, Mirco Cosottini, Ferdia A. Gallagher, Pedro A. Gómez, Martin J. Graves, Mary A. McLean, Frank Riemer, Rolf F. Schulte, Michela Tosetti, Fulvio Zaccagna, Joshua D. Kaggie

Research output: Contribution to journalArticlepeer-review

Abstract

Fully-quantitative MR imaging methods are useful for longitudinal characterization of disease and assessment of treatment efficacy. However, current quantitative MRI protocols have not been widely adopted in the clinic, mostly due to lengthy scan times. Magnetic Resonance Fingerprinting (MRF) is a new technique that can reconstruct multiple parametric maps from a single fast acquisition in the transient state of the MR signal. Due to the relative novelty of this technique, the repeatability and reproducibility of quantitative measurements obtained using MRF has not been extensively studied. Our study acquired test/retest data from the brains of nine healthy volunteers, each scanned on five MRI systems (two at 3.0 T and three at 1.5 T, all from a single vendor) located at two different centers. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived M 0 , T 1 and T 2 maps to an anatomical atlas, coefficients-of-variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated an excellent repeatability (CVs of 2–3% for T 1 , 5–8% for T 2 , 3% for normalized-M 0 ) and a good reproducibility (CVs of 3–8% for T 1 , 8–14% for T 2 , 5% for normalized-M 0 ) in grey and white matter.

Original languageEnglish
Pages (from-to)362-372
Number of pages11
JournalNeuroImage
Volume195
DOIs
Publication statusPublished - Jul 15 2019

Keywords

  • Brain
  • MR fingerprinting
  • MRI
  • Quantitation
  • Relaxometry

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience

Fingerprint Dive into the research topics of 'Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T'. Together they form a unique fingerprint.

Cite this