Multiscale sample entropy of heart rate and blood pressure: Methodological aspects

Paolo Castiglioni, Lorenzo Brambilla, Matteo Bini, Paolo Coruzzi, Andrea Faini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The entropy of heart rate variability is one of the main features characterizing the complexity of the cardiovascular system. In order to take into account the multiscale nature of cardiovascular regulation, it was proposed to evaluate entropy with a multiscale approach, based on the estimation of Sample Entropy on progressively coarse-grained series (Multiscale Sample Entropy, MSE). Aim of this work is to investigate two methodological aspects related to MSE of cardiovascular signals. The first aspect regards the tolerance below which a couple of points are considered similar in a given embedding dimension, in particular how the way the tolerance is set at each level of coarse graining influences the MSE estimates. The second aspect regards whether heart rate and blood pressure (BP) signals are characterized by different MSE structures.To investigate these aspects, we analyzed 65 continuous BP recordings of more than 90-minute duration in healthy volunteers sitting at rest, and applied MSE estimators to beat-by-beat series of systolic BP, diastolic BP and pulse interval (inverse of heart rate). Results indicate that the way the tolerance is set during coarse graining influences substantially the MSE profile of cardiovascular signals, modifying the relative level of their unpredictability.

Original languageEnglish
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3134-3137
Number of pages4
ISBN (Electronic)9781509028092
DOIs
Publication statusPublished - Sep 13 2017
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Conference

Conference39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
CountryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Multiscale sample entropy of heart rate and blood pressure: Methodological aspects'. Together they form a unique fingerprint.

Cite this