Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein

C. Sette, C. J. Inouye, S. L. Stroschein, P. J. Iaquinta, J. Thorner

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gβγ (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gβγ. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Δ mutation, yet supports mating even in ste4Δ ste5Δ cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Δ cells, but does not allow mating of ste4Δ, ste5Δ cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Δ ste5Δ, cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gβγ is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, SteS(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-SteS(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gβγ to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.

Original languageEnglish
Pages (from-to)4033-4049
Number of pages17
JournalMolecular Biology of the Cell
Volume11
Issue number11
Publication statusPublished - 2000

Fingerprint

Activation Analysis
Pheromones
Mitogen-Activated Protein Kinases
Glutathione Transferase
Yeasts
Mutation
Proteins
p21-Activated Kinases
MAP Kinase Kinase Kinases
Genetic Selection
Dimerization
Cell Cycle Checkpoints
Transcriptional Activation
Plasmids
Phosphotransferases
Alleles
Phosphorylation
Cell Membrane

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. / Sette, C.; Inouye, C. J.; Stroschein, S. L.; Iaquinta, P. J.; Thorner, J.

In: Molecular Biology of the Cell, Vol. 11, No. 11, 2000, p. 4033-4049.

Research output: Contribution to journalArticle

@article{ac12a0612fe4429097e91dd8de870121,
title = "Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein",
abstract = "Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gβγ (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gβγ. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Δ mutation, yet supports mating even in ste4Δ ste5Δ cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Δ cells, but does not allow mating of ste4Δ, ste5Δ cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Δ ste5Δ, cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gβγ is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, SteS(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-SteS(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gβγ to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.",
author = "C. Sette and Inouye, {C. J.} and Stroschein, {S. L.} and Iaquinta, {P. J.} and J. Thorner",
year = "2000",
language = "English",
volume = "11",
pages = "4033--4049",
journal = "Molecular Biology of the Cell",
issn = "1059-1524",
publisher = "American Society for Cell Biology",
number = "11",

}

TY - JOUR

T1 - Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein

AU - Sette, C.

AU - Inouye, C. J.

AU - Stroschein, S. L.

AU - Iaquinta, P. J.

AU - Thorner, J.

PY - 2000

Y1 - 2000

N2 - Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gβγ (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gβγ. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Δ mutation, yet supports mating even in ste4Δ ste5Δ cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Δ cells, but does not allow mating of ste4Δ, ste5Δ cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Δ ste5Δ, cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gβγ is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, SteS(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-SteS(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gβγ to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.

AB - Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gβγ (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gβγ. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Δ mutation, yet supports mating even in ste4Δ ste5Δ cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Δ cells, but does not allow mating of ste4Δ, ste5Δ cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Δ ste5Δ, cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gβγ is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, SteS(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-SteS(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gβγ to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.

UR - http://www.scopus.com/inward/record.url?scp=0033739255&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033739255&partnerID=8YFLogxK

M3 - Article

VL - 11

SP - 4033

EP - 4049

JO - Molecular Biology of the Cell

JF - Molecular Biology of the Cell

SN - 1059-1524

IS - 11

ER -