Nano-strategies to target breast cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy

Marta Truffi, Serena Mazzucchelli, Arianna Bonizzi, Luca Sorrentino, Raffaele Allevi, Renzo Vanna, Carlo Morasso, Fabio Corsi

Research output: Contribution to journalReview articlepeer-review


Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo-and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.

Original languageEnglish
Article number1263
JournalInternational Journal of Molecular Sciences
Issue number6
Publication statusPublished - Mar 2 2019


  • Antitumor efficacy
  • Breast cancer
  • Cancer-associated fibroblasts
  • Nanoparticles
  • Tumor microenvironment

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Nano-strategies to target breast cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy'. Together they form a unique fingerprint.

Cite this