TY - JOUR
T1 - Nanocomplexes for gene therapy of respiratory diseases
T2 - Targeting and overcoming the mucus barrier
AU - Di Gioia, Sante
AU - Trapani, Adriana
AU - Castellani, Stefano
AU - Carbone, Annalucia
AU - Belgiovine, Giuliana
AU - Craparo, Emanuela Fabiola
AU - Puglisi, Giovanni
AU - Cavallaro, Gennara
AU - Trapani, Giuseppe
AU - Conese, Massimo
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials.
AB - Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials.
KW - Asthma
KW - Cystic fibrosis
KW - Lung cancer
KW - Mucolytics
KW - Poly(ethylene glycol)
KW - Sputum
UR - http://www.scopus.com/inward/record.url?scp=84943268784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943268784&partnerID=8YFLogxK
U2 - 10.1016/j.pupt.2015.07.003
DO - 10.1016/j.pupt.2015.07.003
M3 - Article
C2 - 26192479
AN - SCOPUS:84943268784
VL - 34
SP - 8
EP - 24
JO - Pulmonary Pharmacology and Therapeutics
JF - Pulmonary Pharmacology and Therapeutics
SN - 1094-5539
ER -