Neuromuscular adaptations to electrostimulation resistance training

Nicola A. Maffiuletti, Raphael Zory, Danilo Miotti, Maria A. Pellegrino, Marc Jubeau, Roberto Bottinelli

Research output: Contribution to journalArticlepeer-review

Abstract

A combination of in vivo and in vitro analyses was performed to investigate muscular and neural adaptations of the weaker (nondominant) quadriceps femoris muscle of one healthy individual to short-term electrostimulation resistance training. The increase in maximal voluntary strength (+12%) was accompanied by neural (cross-education effect and increased muscle activation) and muscle adaptations (impairment of whole-muscle contractile properties). Significant changes in myosin heavy chain (MHC) isoforms relative content (+22% for MHC-2A and -28% for MHC-2X), single-fiber cross-sectional area (+27% for type 1 and +6% for type 2A muscle fibers), and specific tension of type 1 (+67%) but not type 2A fibers were also observed after training. Plastic changes in neural control confirm the possible involvement of both spinal and supraspinal structures to electrically evoked contractions. Changes at the single muscle fiber level induced by electrostimulation resistance training were significant and preferentially affected slow, type 1 fibers.

Original languageEnglish
Pages (from-to)167-175
Number of pages9
JournalAmerican Journal of Physical Medicine and Rehabilitation
Volume85
Issue number2
DOIs
Publication statusPublished - Feb 2006

Keywords

  • Activation
  • Contractile Properties
  • Myosin Heavy Chain
  • Quadriceps Femoris
  • Strength

ASJC Scopus subject areas

  • Rehabilitation
  • Health Professions(all)
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint Dive into the research topics of 'Neuromuscular adaptations to electrostimulation resistance training'. Together they form a unique fingerprint.

Cite this