TY - JOUR
T1 - Neurounina-1, a novel compound that increases Na+/Ca 2+ exchanger activity, effectively protects against stroke damage
AU - Molinaro, Pasquale
AU - Cantile, Maria
AU - Cuomo, Ornella
AU - Secondo, Agnese
AU - Pannaccione, Anna
AU - Ambrosino, Paolo
AU - Pignataro, Giuseppe
AU - Fiorino, Ferdinando
AU - Severino, Beatrice
AU - Gatta, Elena
AU - Sisalli, Maria José
AU - Milanese, Marco
AU - Scorziello, Antonella
AU - Bonanno, Giambattista
AU - Robello, Mauro
AU - Santagada, Vincenzo
AU - Caliendo, Giuseppe
AU - Di Renzo, Gianfranco
AU - Annunziato, Lucio
PY - 2013/1
Y1 - 2013/1
N2 - Previous studies have demonstrated that the knockdown or knockout of the three Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, worsens ischemic brain damage. This suggests that the activation of these antiporters exerts a neuroprotective action against stroke damage. However, drugs able to increase the activity of NCXs are not yet available. We have here succeeded in synthesizing a new compound, named neurounina-1 (7-nitro-5-phenyl-1-(pyrrolidin-1-ylmethyl)-1H-benzo[e][1,4]diazepin-2(3H)-one), provided with an high lipophilicity index and able to increase NCX activity. Ca2+ radiotracer, Fura-2 microfluorimetry, and patch-clamp techniques revealed that neurounina-1 stimulated NCX1 and NCX2 activities with an EC 50 in the picomolar to low nanomolar range, whereas it did not affect NCX3 activity. Furthermore, by using chimera strategy and site-directed mutagenesis, three specific molecular determinants of NCX1 responsible for neurounina-1 activity were identified in the α-repeats. Interestingly, NCX3 became responsive to neurounina-1 when both a-repeats were replaced with the corresponding regions of NCX1. In vitro studies showed that 10 nM neurounina-1 reduced cell death of primary cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation. Moreover, in vitro, neurounina-1 also reduced γ-aminobutyric acid (GABA) release, enhanced GABAA currents, and inhibited both glutamate release and N-methyl-D-aspartate receptors. More important, neurounina-1 proved to have a wide therapeutic window in vivo. Indeed, when administered at doses of 0.003 to 30 μg/kg i.p., it was able to reduce the infarct volume of mice subjected to transient middle cerebral artery occlusion even up to 3 to 5 hours after stroke onset. Collectively, the present study shows that neurounina-1 exerts a remarkable neuroprotective effect during stroke and increases NCX1 and NCX2 activities.
AB - Previous studies have demonstrated that the knockdown or knockout of the three Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, worsens ischemic brain damage. This suggests that the activation of these antiporters exerts a neuroprotective action against stroke damage. However, drugs able to increase the activity of NCXs are not yet available. We have here succeeded in synthesizing a new compound, named neurounina-1 (7-nitro-5-phenyl-1-(pyrrolidin-1-ylmethyl)-1H-benzo[e][1,4]diazepin-2(3H)-one), provided with an high lipophilicity index and able to increase NCX activity. Ca2+ radiotracer, Fura-2 microfluorimetry, and patch-clamp techniques revealed that neurounina-1 stimulated NCX1 and NCX2 activities with an EC 50 in the picomolar to low nanomolar range, whereas it did not affect NCX3 activity. Furthermore, by using chimera strategy and site-directed mutagenesis, three specific molecular determinants of NCX1 responsible for neurounina-1 activity were identified in the α-repeats. Interestingly, NCX3 became responsive to neurounina-1 when both a-repeats were replaced with the corresponding regions of NCX1. In vitro studies showed that 10 nM neurounina-1 reduced cell death of primary cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation. Moreover, in vitro, neurounina-1 also reduced γ-aminobutyric acid (GABA) release, enhanced GABAA currents, and inhibited both glutamate release and N-methyl-D-aspartate receptors. More important, neurounina-1 proved to have a wide therapeutic window in vivo. Indeed, when administered at doses of 0.003 to 30 μg/kg i.p., it was able to reduce the infarct volume of mice subjected to transient middle cerebral artery occlusion even up to 3 to 5 hours after stroke onset. Collectively, the present study shows that neurounina-1 exerts a remarkable neuroprotective effect during stroke and increases NCX1 and NCX2 activities.
UR - http://www.scopus.com/inward/record.url?scp=84871545415&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871545415&partnerID=8YFLogxK
U2 - 10.1124/mol.112.080986
DO - 10.1124/mol.112.080986
M3 - Article
C2 - 23066092
AN - SCOPUS:84871545415
VL - 83
SP - 142
EP - 156
JO - Molecular Pharmacology
JF - Molecular Pharmacology
SN - 0026-895X
IS - 1
ER -