TY - JOUR
T1 - Neutrophil apoptosis in autoimmune fas-defective MRL lpr/lpr mice
AU - Del Giudice, E.
AU - Ciaramella, A.
AU - Balestro, N.
AU - Neumann, D.
AU - Romano, P. G.
AU - Cesaroni, M. P.
AU - Maurizi, G.
AU - Ruggiero, P.
AU - Boraschi, D.
AU - Bossù, P.
PY - 2001
Y1 - 2001
N2 - The apoptosis-defective lpr (fas) mutation in MRL mice causes the early onset of a lupus-like autoimmune disease with concomitant inflammation. In order to analyse the consequences of the impaired Fas-dependent apoptosis on inflammation, the susceptibility to apoptosis of polymorphonuclear leukocytes (PMN), obtained from MRL lpr/lpr mice, has been studied. Peritoneal PMN from lpr/lpr and control (+/+) mice were recruited with a mild inflammatory stimulus. The number of cells collected from the peritoneal cavity of young lpr/lpr mice was comparable to that obtained from age-matched control mice, indicating that PMN homeostasis is maintained regardless of the loss-of-function Fas mutation. Recruited neutrophils were exposed in culture to apoptosis-inducing stimuli. Treatment with agonist anti-Fas antibody increased apoptosis of +/+ PMN, but did not affect lpr/lpr PMN which do not express Fas on their surface. However, lpr/lpr PMN could undergo both spontaneous and stimulus-induced apoptosis in a fashion comparable to or higher than that of control +/+ mice. Analysis of mRNA expression revealed that lpr/lpr PMN have reduced expression of IL-18, whereas IL-1β, IFNγ, caspase 1 and caspase 3 are expressed at levels comparable to those of +/+ cells. However, caspase-3-like activity was higher in PMN from lpr/lpr mice than in +/+ cells, and correlated with enhanced apoptosis. It could be concluded that in young, uncompromised lpr/lpr mice, PMN homeostasis is still fully regulated through the involvement of Fas-independent, compensatory, apoptotic mechanisms. This could include an increased participation of caspase 3 in the apoptotic pathway, consequent to enhanced activation of the enzyme and to the decreased production of IL-18, which acts as a competitive caspase 3 substrate.
AB - The apoptosis-defective lpr (fas) mutation in MRL mice causes the early onset of a lupus-like autoimmune disease with concomitant inflammation. In order to analyse the consequences of the impaired Fas-dependent apoptosis on inflammation, the susceptibility to apoptosis of polymorphonuclear leukocytes (PMN), obtained from MRL lpr/lpr mice, has been studied. Peritoneal PMN from lpr/lpr and control (+/+) mice were recruited with a mild inflammatory stimulus. The number of cells collected from the peritoneal cavity of young lpr/lpr mice was comparable to that obtained from age-matched control mice, indicating that PMN homeostasis is maintained regardless of the loss-of-function Fas mutation. Recruited neutrophils were exposed in culture to apoptosis-inducing stimuli. Treatment with agonist anti-Fas antibody increased apoptosis of +/+ PMN, but did not affect lpr/lpr PMN which do not express Fas on their surface. However, lpr/lpr PMN could undergo both spontaneous and stimulus-induced apoptosis in a fashion comparable to or higher than that of control +/+ mice. Analysis of mRNA expression revealed that lpr/lpr PMN have reduced expression of IL-18, whereas IL-1β, IFNγ, caspase 1 and caspase 3 are expressed at levels comparable to those of +/+ cells. However, caspase-3-like activity was higher in PMN from lpr/lpr mice than in +/+ cells, and correlated with enhanced apoptosis. It could be concluded that in young, uncompromised lpr/lpr mice, PMN homeostasis is still fully regulated through the involvement of Fas-independent, compensatory, apoptotic mechanisms. This could include an increased participation of caspase 3 in the apoptotic pathway, consequent to enhanced activation of the enzyme and to the decreased production of IL-18, which acts as a competitive caspase 3 substrate.
KW - Apoptosis
KW - Autoimmunity
KW - Neutrophils
UR - http://www.scopus.com/inward/record.url?scp=0034807901&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034807901&partnerID=8YFLogxK
M3 - Article
C2 - 11566632
AN - SCOPUS:0034807901
VL - 12
SP - 510
EP - 517
JO - Environmental and Molecular Mutagenesis
JF - Environmental and Molecular Mutagenesis
SN - 0893-6692
IS - 3
ER -