New insights for the use of quercetin analogs in cancer treatment

Domenico Iacopetta, Fedora Grande, Anna Caruso, Roberta Alessandra Mordocco, Maria Rosaria Plutino, Luca Scrivano, Jessica Ceramella, Noemi Muià, Carmela Saturnino, Francesco Puoci, Camillo Rosano, Maria Stefania Sinicropi

Research output: Contribution to journalArticlepeer-review

Abstract

Aim: Quercetin (Q1) is a flavonoid widely present in plants and endowed with several pharmacological properties mostly due to its antioxidant potential. Q1 shows anticancer activity and could be useful in cancer prevention. On the other hand, Q1 is poorly soluble in water and unstable in physiological systems, and its bioavailability is very low. Methods: A small set of Q1 derivatives (Q2-Q9) has been synthesized following opportunely modified chemical procedures previously reported. Anticancer activity has been evaluated by MTT assay. Human Topoisomerases inhibition has been performed by direct enzymatic assays. Apoptosis has been evaluated by TUNEL assay. ROS production and scavenging activity have been determined by immunofluorescence. Results: The anticancer profile of a small library of Q1 analogues, in which the OH groups were all or partially replaced with hydrophobic functional groups, has been evaluated. Two of the studied compounds demonstrated an interesting cytotoxic profile in two breast cancer models showing the capability to inhibit human Topoisomerases. Conclusion: The studied compounds represent suitable leads for the development of innovative anticancer drugs. </inline-graphic.

Original languageEnglish
Pages (from-to)2011-2028
Number of pages18
JournalFuture Medicinal Chemistry
Volume9
Issue number17
DOIs
Publication statusPublished - Nov 1 2017

Keywords

  • human Topoisomerases I and II
  • quercetin analogs
  • ROS scavengers

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology
  • Drug Discovery

Fingerprint Dive into the research topics of 'New insights for the use of quercetin analogs in cancer treatment'. Together they form a unique fingerprint.

Cite this