TY - JOUR
T1 - Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients
AU - Arcangeli, Silvia
AU - Falcone, Laura
AU - Camisa, Barbara
AU - De Girardi, Federica
AU - Biondi, Marta
AU - Giglio, Fabio
AU - Ciceri, Fabio
AU - Bonini, Chiara
AU - Bondanza, Attilio
AU - Casucci, Monica
N1 - Funding Information:
We thank the whole CARAT consortium and in particular Dr. Andrew Kaiser and Prof. Gianpietro Dotti for the support and the discussions in the course of the project. We also acknowledge Prof. Luigi Naldini for providing the bidirectional lentiviral backbone where to express the Gaussia Luciferase. Finally, a special thank goes to Dr. Camilla Bove for the technical support during the execution of the experiments and Dr. Marta Moresco for active assistance in drafting the manuscript and figure processing. Funding. This work was supported by the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 667980 (CARAT to MC), by the Italian Ministry of Health, Young Investigator Grant (GR-2013-02359212 to MC), by the Italian Ministry of Health and Alliance Against Cancer (Ricerca Corrente CAR T project: RCR-2019-23669115 to MC, FC, and CB), and by the Italian Ministry of University and Research (MIUR-PRIN 2017WC8499_002 to CB).
Publisher Copyright:
© Copyright © 2020 Arcangeli, Falcone, Camisa, De Girardi, Biondi, Giglio, Ciceri, Bonini, Bondanza and Casucci.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6/19
Y1 - 2020/6/19
N2 - Chimeric antigen receptor (CAR) T cell expansion and persistence emerged as key efficacy determinants in cancer patients. These features are typical of early-memory T cells, which can be enriched with specific manufacturing procedures, providing signal one and signal two in the proper steric conformation and in the presence of homeostatic cytokines. In this project, we exploited our expertise with paramagnetic beads and IL-7/IL-15 to develop an optimized protocol for CAR T cell production based on reagents, including a polymeric nanomatrix, which are compatible with automated manufacturing via the CliniMACS Prodigy. We found that both procedures generate similar CAR T cell products, highly enriched of stem cell memory T cells (TSCM) and equally effective in counteracting tumor growth in xenograft mouse models. Most importantly, the optimized protocol was able to expand CAR TSCM from B-cell acute lymphoblastic leukemia (B-ALL) patients, which in origin were highly enriched of late-memory and exhausted T cells. Notably, CAR T cells derived from B-ALL patients proved to be as efficient as healthy donor-derived CAR T cells in mediating profound and prolonged anti-tumor responses in xenograft mouse models. On the contrary, the protocol failed to expand fully functional CAR TSCM from patients with pancreatic ductal adenocarcinoma, suggesting that patient-specific factors may profoundly affect intrinsic T cell quality. Finally, by retrospective analysis of in vivo data, we observed that the proportion of TSCM in the final CAR T cell product positively correlated with in vivo expansion, which in turn proved to be crucial for achieving long-term remissions. Collectively, our data indicate that next-generation manufacturing protocols can overcome initial T cell defects, resulting in TSCM-enriched CAR T cell products qualitatively equivalent to the ones generated from healthy donors. However, this positive effect may be decreased in specific conditions, for which the development of further improved protocols and novel strategies might be highly beneficial.
AB - Chimeric antigen receptor (CAR) T cell expansion and persistence emerged as key efficacy determinants in cancer patients. These features are typical of early-memory T cells, which can be enriched with specific manufacturing procedures, providing signal one and signal two in the proper steric conformation and in the presence of homeostatic cytokines. In this project, we exploited our expertise with paramagnetic beads and IL-7/IL-15 to develop an optimized protocol for CAR T cell production based on reagents, including a polymeric nanomatrix, which are compatible with automated manufacturing via the CliniMACS Prodigy. We found that both procedures generate similar CAR T cell products, highly enriched of stem cell memory T cells (TSCM) and equally effective in counteracting tumor growth in xenograft mouse models. Most importantly, the optimized protocol was able to expand CAR TSCM from B-cell acute lymphoblastic leukemia (B-ALL) patients, which in origin were highly enriched of late-memory and exhausted T cells. Notably, CAR T cells derived from B-ALL patients proved to be as efficient as healthy donor-derived CAR T cells in mediating profound and prolonged anti-tumor responses in xenograft mouse models. On the contrary, the protocol failed to expand fully functional CAR TSCM from patients with pancreatic ductal adenocarcinoma, suggesting that patient-specific factors may profoundly affect intrinsic T cell quality. Finally, by retrospective analysis of in vivo data, we observed that the proportion of TSCM in the final CAR T cell product positively correlated with in vivo expansion, which in turn proved to be crucial for achieving long-term remissions. Collectively, our data indicate that next-generation manufacturing protocols can overcome initial T cell defects, resulting in TSCM-enriched CAR T cell products qualitatively equivalent to the ones generated from healthy donors. However, this positive effect may be decreased in specific conditions, for which the development of further improved protocols and novel strategies might be highly beneficial.
KW - B-ALL and PDAC
KW - CAR design
KW - CAR T
KW - CAR T cell fitness
KW - CAR T cell manufacturing
KW - patient samples
UR - http://www.scopus.com/inward/record.url?scp=85087511637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087511637&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2020.01217
DO - 10.3389/fimmu.2020.01217
M3 - Article
C2 - 32636841
AN - SCOPUS:85087511637
VL - 11
JO - Frontiers in Immunology
JF - Frontiers in Immunology
SN - 1664-3224
M1 - 1217
ER -