Abstract
Original language | English |
---|---|
Pages (from-to) | 1-22 |
Number of pages | 22 |
Journal | Int. J. Mol. Sci. |
Volume | 21 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Breast cancer
- Cardioncology
- Cardiotoxicity
- Cytokines
- Hyperglycemia
- Nivolumab
- cryopyrin
- cytotoxic T lymphocyte antigen 4
- dapansutrile
- empagliflozin
- glucose
- interleukin 1beta
- interleukin 6
- ipilimumab
- myeloid differentiation factor 88
- platelet derived growth factor
- reactive oxygen metabolite
- vasculotropin
- animal cell
- animal experiment
- animal model
- antineoplastic activity
- Article
- breast cancer cell line
- cancer mortality
- cancer resistance
- cardiac muscle cell
- cardiotoxicity
- cell viability
- controlled study
- enzyme linked immunosorbent assay
- female
- fluorescence activated cell sorting
- human
- human cell
- hyperglycemia
- lipid peroxidation
- MCF-7 cell line
- MDA-MB-231 cell line
- mouse
- nonhuman
- protein expression
- triple negative breast cancer
Fingerprint
Dive into the research topics of 'Nlrp3 as putative marker of ipilimumab-induced cardiotoxicity in the presence of hyperglycemia in estrogen-responsive and triple-negative breast cancer cells: International Journal of Molecular Sciences'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Nlrp3 as putative marker of ipilimumab-induced cardiotoxicity in the presence of hyperglycemia in estrogen-responsive and triple-negative breast cancer cells : International Journal of Molecular Sciences. / Quagliariello, V.; Laurentiis, M.D.; Cocco, S. et al.
In: Int. J. Mol. Sci., Vol. 21, No. 20, 2020, p. 1-22.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Nlrp3 as putative marker of ipilimumab-induced cardiotoxicity in the presence of hyperglycemia in estrogen-responsive and triple-negative breast cancer cells
T2 - International Journal of Molecular Sciences
AU - Quagliariello, V.
AU - Laurentiis, M.D.
AU - Cocco, S.
AU - Rea, G.
AU - Bonelli, A.
AU - Caronna, A.
AU - Conforti, G.
AU - Berretta, M.
AU - Botti, G.
AU - Maurea, N.
N1 - Cited By :1 Export Date: 18 February 2021 Correspondence Address: Quagliariello, V.; Division of Cardiology, Italy; email: quagliariello.enzo@gmail.com Correspondence Address: Maurea, N.email: n.maurea@istitutotumori.na.it Chemicals/CAS: dapansutrile, 54863-37-5; empagliflozin, 864070-44-0; glucose, 50-99-7, 84778-64-3; ipilimumab, 477202-00-9; vasculotropin, 127464-60-2 Funding text 1: Funding: This work was funded by a “Ricerca Corrente” grant from the Italian Ministry of Health. “Cardiotossicità dei trattamenti antineoplastici: identificazione precoce e strategie di cardioprotezione” Project code: M1/5-C. References: Immunotherapy: Hype and hope (2018) Lancet Oncol, 19, p. 845. , The Lancet Oncology; Haslam, A., Prasad, V., Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs (2019) JAMA Netw. Open, 2, p. e192535; Salmaninejad, A., Valilou, S.F., Shabgah, A.G, Aslani, S., Alimardani, M., Pasdar, A., Sahebkar, A., PD-1/PDL1 pathway: Basic biology and role in cancer immunotherapy (2019) J. Cell. Physiol, 234, pp. 16824-16837; Seidel, J.A., Otsuka, A., Kabashima, K., Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations (2018) Front. Oncol, 8, p. 86; Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Rutkowski, P., Lao, C.D., Cowey, C.L., Ferrucci, P.F., Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma (2019) N. Engl. J. Med, 381, pp. 1535-1546; Martins, F., Sofiya, L., Sykiotis, G.P., Lamine, F., Maillard, M., Fraga, M., Shabafrouz, K., Guex-Crosier, Y., Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance (2019) Nat. Rev. Clin. Oncol, 16, pp. 563-580; Zhou, Y.W., Zhu, Y.J., Wang, M.N., Xie, Y., Chen, C.Y., Zhang, T., Xia, F., Liu, J.Y., Immune Checkpoint Inhibitor-Associated Cardiotoxicity: Current Understanding on Its Mechanism, Diagnosis and Management (2019) Front. Pharmacol, 10, p. 1350; Ganatra, S., Neilan, T.G., Immune Checkpoint Inhibitor-Associated Myocarditis (2018) Oncologist, 23, pp. 879-886; Michel, L., Rassaf, T., Totzeck, M., Cardiotoxicity from immune checkpoint inhibitors (2019) Int. J. Cardiol. Heart Vasc, 25, p. 100420; Ottaiano, A., Nappi, A., Tafuto, S., Nasti, G., De Divitiis, C., Romano, C., Cassata, A., Avallone, A., Diabetes and Body Mass Index Are Associated with Neuropathy and Prognosis in Colon Cancer Patients Treated with Capecitabine and Oxaliplatin Adjuvant Chemotherapy (2016) Oncology, 90, pp. 36-42; Noto, H., Goto, A., Tsujimoto, T., Osame, K., Noda, M., Latest insights into the risk of cancer in diabetes (2013) J. Diabetes Investig, 4, pp. 225-232; Ryu, T.Y., Park, J., Scherer, P.E., Hyperglycemia as a risk factor for cancer progression (2014) Diabetes Metab. J, 38, pp. 330-336; Habib, S.L., Rojna, M., Diabetes and risk of cancer (2013) ISRN Oncol, 2013, p. 583786; Gapstur, S.M., Gann, P.H., Lowe, W., Liu, K., Colangelo, L., Dyer, A., Abnormal glucose metabolism and pancreatic cancer mortality (2000) JAMA, 283, pp. 2552-2558; Leroith, D., Scheinman, E.J., Bitton-Worms, K., The Role of Insulin and Insulin-like Growth Factors in the Increased Risk of Cancer in Diabetes (2011) Rambam Maimonides Med. J, 2, p. e0043; Bowers, L.W., Rossi, E.L., O’Flanagan, C.H., deGraffenried, L.A., Hursting, S.D., The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link (2015) Front. Endocrinol. (Lausanne), 6, p. 77; Joshi, S., Liu, M., Turner, N., Diabetes and its link with cancer: Providing the fuel and spark to launch an aggressive growth regime (2015) Biomed Res. Int, 2015, p. 390863; Hou, Y., Zhou, M., Xie, J., Chao, P., Feng, Q., Wu, J., High glucose levels promote the proliferation of breast cancer cells through GTPases (2017) Breast Cancer (Dove Med. Press), 9, pp. 429-436; Ambrosio, M.R., D'Esposito, V., Costa, V., Liguoro, D., Collina, F., Cantile, M., Prevete, N., Di Bonito, M., Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells (2017) Oncotarget, 8, pp. 109000-109017; Zhuang, X.D., Hu, X., Long, M., Dong, X.B., Liu, D.H., Liao, X.X., Exogenous hydrogen sulfide alleviates high glucose-induced cardiotoxicity via inhibition of leptin signaling in H9c2 cells (2014) Mol. Cell. Biochem, 391, pp. 147-155; Bell, D.S.H., Goncalves, E., Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications (2019) Diabetes Obes. Metab, 21, pp. 1277-1290; Russo, I., Frangogiannis, N.G., Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities (2016) J. Mol. Cell. Cardiol, 90, pp. 84-93; Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D., Latz, E., Targeting the NLRP3 inflammasome in inflammatory diseases (2018) Nat. Rev. Drug Discov, 17, pp. 588-606; Kelley, N., Jeltema, D., Duan, Y., He, Y., The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation (2019) Int. J. Mol. Sci, 20, p. 3328; Xue, Y., Du, H.D., Tang, D., Zhang, D., Zhou, J., Zhai, C.W., Yuan, C.C., Heng, Y., Correlation Between the NLRP3 Inflammasome and the Prognosis of Patients With LSCC (2019) Front. Oncol, 9, p. 588; Luo, B., Huang, F., Liu, Y., Liang, Y., Wei, Z., Ke, H., Zeng, Z., He, Y., NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy (2017) Front. Physiol, 8, p. 519; Feng, Y., Zou, L., Zhang, M., Li, Y., Chen, C., Chao, W., MyD88 and Trif signaling play distinct roles in cardiac dysfunction and mortality during endotoxin shock and polymicrobial sepsis (2011) Anesthesiology, 115, pp. 555-567; Blyszczuk, P., Kania, G., Dieterle, T., Marty, R.R., Valaperti, A., Berthonneche, C., Pedrazzini, T., Matter, C.M., Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy (2009) Circ. Res, 105, pp. 912-920; Thi, H.T.H., Hong, S., Inflammasome as a Therapeutic Target for Cancer Prevention and Treatment (2017) J. Cancer Prev, 22, pp. 62-73; Boyle, P., Boniol, M., Koechlin, A., Robertson, C., Valentini, F., Coppens, K., Fairley, L.L., Zhang, Y., Diabetes and breast cancer risk: A meta-analysis (2012) Br. J. Cancer, 107, pp. 1608-1617; Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Woerle, H.J., Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes (2015) N. Engl. J. Med, 373, pp. 2117-2128; Quagliariello, V., Coppola, C., Mita, D.G., Piscopo, G., Iaffaioli, R.V., Botti, G., Maurea, N., Low doses of Bisphenol A have pro-inflammatory and pro-oxidant effects, stimulate lipid peroxidation and increase the cardiotoxicity of Doxorubicin in cardiomyoblasts (2019) Environ. Toxicol. Pharmacol, 69, pp. 1-8; Ayala, A., Muñoz, M.F., Argüelles, S., Lipid peroxidation: Production, metabolism, and signalling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal (2014) Oxid. Med. Cell. Longev, 2014, p. 360438; Rodriguez, A.E., Bogart, C., Gilbert, C.M., McCullers, J.A., Smith, AM, Kanneganti, TD, Lupfer, CR., Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae (2019) PLoS ONE, 14, p. e0212236; Ramteke, P., Deb, A., Shepal, V., Bhat, M.K., Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality (2019) Cancers (Basel), 11, p. 1402; Hartog, J.W., Voors, A.A., Bakker, S.J., Smit, A.J., van Veldhuisen, D.J., Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications (2007) Eur. J. Heart Fail, 9, pp. 1146-1155; Kenny, H.C., Abel, E.D., Heart Failure in Type 2 Diabetes Mellitus (2019) Circ. Res, 124, pp. 121-141; Kaludercic, N., Di Lisa, F., Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy (2020) Front. Cardiovasc. Med, 7, p. 12; Duan, X., Chan, C., Han, W., Guo, N., Weichselbaum, R.R., Lin, W., Immunostimulatorynanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors (2019) Nat. Commun, 10, p. 1899; Busik, J.V., Mohr, S., Grant, M.B., Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators (2008) Diabetes, 57, pp. 1952-1965; Mantovani, A., Barajon, I., Garlanda, C., IL-1 and IL-1 regulatory pathways in cancer progression and therapy (2018) Immunol. Rev, 281, pp. 57-61; Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., Fonseca, F., Koenig, W., Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease (2017) N. Engl. J. Med, 377, pp. 1119-1131; Schenk, K.M., Reuss, J.E., Choquette, K., Spira, A.I., A review of canakinumab and its therapeutic potential for non-small cell lung cancer (2019) Anticancer Drugs, 30, pp. 879-885; Brandhorst, S., Longo, V.D., Fasting and Caloric Restriction in Cancer Prevention and Treatment (2016) Recent Results Cancer Res, 207, pp. 241-266; Afzal, M.Z., Mercado, R.R., Shirai, K., Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma (2018) J. Immunother. Cancer, 6, p. 64; Nivolumab and Metformin Hydrochloride in Treating Patients with Stage III-IV Non-small Cell Lung Cancer That Cannot Be Removed by Surgery, , Https://clinicaltrials.gov/ct2/show/NCT03048500, (accessed on 9 February 2017); Malaguarnera, L., Influence of Resveratrol on the Immune Response (2019) Nutrients, 11, p. 946; Honari, M., Shafabakhsh, R., Reiter, R.J., Mirzaei, H., Asemi, Z., Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms (2019) Cancer Cell Int, 19, p. 180; Berretta, M., Bignucolo, A., Di Francia, R., Comello, F., Facchini, G., Ceccarelli, M., Iaffaioli, R.V., Maurea, N., Resveratrol in Cancer Patients: From Bench to Bedside (2020) Int. J. Mol. Sci, 21, p. 2945; Barbieri, A., Quagliariello, V., Del Vecchio, V., Falco, M., Luciano, A., Amruthraj, N.J., Nasti, G., Arra, C., Anticancer and Anti-Inflammatory Properties of Ganodermalucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment (2017) Nutrients, 9, p. 210; Berretta, M., Della Pepa, C., Tralongo, P., Fulvi, A., Martellotta, F., Lleshi, A., Nasti, G., Taibi, R., Use of Complementary and Alternative Medicine (CAM) in cancer patients: An Italian multicenter survey (2017) Oncotarget, 8, pp. 24401-24414; Lestuzzi, C., Bearz, A., Lafaras, C., Gralec, R., Cervesato, E., Tomkowski, W., DeBiasio, M., Platogiannis, D.N., Neoplastic pericardial disease in lung cancer: Impact on outcomes of different treatment strategies. A multicenter study (2011) Lung Cancer, 72, pp. 340-347; Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Desbois, M., Delahaye, N., Viaud, S., Kaplanski, G., IL-18 induces PD-1-dependent immunosuppression in cancer (2011) Cancer Res, 71, pp. 5393-5399; Kaplanov, I., Carmi, Y., Kornetsky, R., Shemesh, A., Shurin, G.V., Shurin, M.R., Dinarello, C.A., Apte, R.N., Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation (2019) Proc. Natl. Acad. Sci. USA, 116, pp. 1361-1369; Zhao, X., Zhang, C., Hua, M., Wang, R., Zhong, C., Yu, J., Han, F., Liu, G., NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma (2017) Oncotarget, 8, pp. 108571-108583; Lee, H.E., Lee, J.Y., Yang, G., Kang, H.C., Cho, Y.Y., Lee, H.S., Lee, J.Y., Inhibition of NLRP3 inflammasome in tumor microenvironment leads to suppression of metastatic potential of cancer cells (2019) Sci. Rep, 9, p. 12277; Zhang, L., Li, H., Zang, Y., Wang, F., NLRP3 inflammasome inactivation driven by miR-223-3p reduces tumor growth and increases anticancer immunity in breast cancer (2019) Mol. Med. Rep, 19, pp. 2180-2188; Qu, D., Liu, J., Lau, C.W., Huang, Y., IL-6 in diabetes and cardiovascular complications (2014) Br. J. Pharmacol, 171, pp. 3595-3603; Waldner, M.J., Foersch, S., Neurath, M.F., Interleukin-6--a key regulator of colorectal cancer development (2012) Int. J. Biol. Sci, 8, pp. 1248-1253; Li, S., Tian, J., Zhang, H., Zhou, S., Wang, X., Zhang, L., Yang, J., Ji, Z., Down-regulating IL- 6/GP130 targets improved the anti-tumor effects of 5-fluorouracil in colon cancer (2018) Apoptosis, 23, pp. 356-374; Babini, G., Morini, J., Barbieri, S., Baiocco, G., Ivaldi, G.B., Liotta, M., Tabarelli de Fatis, P., Ottolenghi, A., A Co-culture Method to Investigate the Crosstalk Between X-ray Irradiated Caco-2 Cells and PBMC (2018) J. Vis. Exp, 131, p. e56908; Chang, D.H., Rutledge, J.R., Patel, A.A., Heerdt, B.G., Augenlicht, L.H., Korst, R.J., The effect of lung cancer on cytokine expression in peripheral blood mononuclear cells (2013) PLoS ONE, 8, p. e64456; Passariello, M., Camorani, S., Vetrei, C., Ricci, S., Cerchia, L., De Lorenzo, C., Ipilimumab and Its Derived EGFR Aptamer-Based Conjugate Induce Efficient NK Cell Activation against Cancer Cells (2020) Cancers (Basel), 12, p. 331; Zheng, Y., Fang, Y.C., Li, J., PD-L1 expression levels on tumor cells affect their immunosuppressive activity (2019) Oncol. Lett, 18, pp. 5399-5407; Pandha, H., Rigg, A., John, J., Lemoine, N., Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines (2007) Clin. Exp. Immunol, 148, pp. 127-135; Kaklamanis, L., Leek, R., Koukourakis, M., Gatter, K.C., Harris, A.L., Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer (1995) Cancer Res, 55, pp. 5191-5194; Gudmundsdóttir, I., GunnlaugurJónasson, J., Sigurdsson, H., Olafsdóttir, K., Tryggvadóttir, L., Ogmundsdóttir, H.M., Altered expression of HLA class I antigens in breast cancer: Association with prognosis (2000) Int. J. Cancer, 89, pp. 500-505; Courau, T., Bonnereau, J., Chicoteau, J., Bottois, H., Remark, R., Assante Miranda, L., Toubert, A., Allez, M., Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment (2019) J. Immunother. Cancer, 7, p. 74; Salem, J.E., Manouchehri, A., Moey, M., Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study (2018) Lancet Oncol, 19, pp. 1579-1589; Tomoaia, R., Beyer, R.S., Pop, D., Minciună, I.A., Dădârlat-Pop, A., Fatal association of fulminant myocarditis and rhabdomyolysis after immune checkpoint blockade (2020) Eur. J. Cancer, 132, pp. 224-227; Martin Huertas, R., Saavedra Serrano, C., Perna, C., Ferrer Gómez, A., Alonso Gordoa, T., Cardiac toxicity of immune-checkpoint inhibitors: A clinical case of nivolumab-induced myocarditis and review of the evidence and new challenges (2019) Cancer Immunol. Res, 11, pp. 235-4548. , Cancer Manag. Res, 4541, 10.2147/CMAR.S185202. 72, Kitano, S.; Tsuji, T.; Liu, C.; Hirschhorn-Cymerman, D.; Kyi, C.; Mu, Z.; Allison, J.P.; Gnjatic, S.; Yuan, J.D.; Wolchok, J.D. Enhancement of tumor-reactive cytotoxic CD4 T cell responses after ipilimumab treatment in four advanced melanoma patients. 2013, 1, –244; Lan, G., Li, J., Wen, Q., Lin, L., Chen, L., Chen, L., Chen, X., Cytotoxic T lymphocyte associated antigen 4 expression predicts poor prognosis in luminal B HER2-negative breast cancer (2018) Oncol. Lett, 15, pp. 5093-5097; Wang, J., Shen, X., Liu, J., Chen, W., Wu, F., Wu, W., Meng, Z., Miao, C., High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression (2020) Cell Death Dis, 11, p. 383; Khaled, Y.S., Ammori, B.J., Elkord, E., Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients (2014) J. Immunol. Res, 2014, p. 879897; Theivanthiran, B., Evans, K.S., DeVito, N.C., Plebanek, M., Sturdivant, M., Wachsmuth, L.P., Salama, A.K., Balko, J.M., A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy (2020) J. Clin. Investig, 130, pp. 2570-2586; Haudek-Prinz, V.J., Klepeisz, P., Slany, A., Griss, J., Meshcheryakova, A., Paulitschke, V., Mitulovic, G., Gerner, C., Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells (2012) J. Proteom, 76, pp. 150-162; Quagliariello, V., Passariello, M., Coppola, C., Rea, D., Barbieri, A., Scherillo, M., Monti, M.G., Ascierto, P.A., Cardiotoxicity and pro-inflammatoryeffects of the immune checkpoint inhibitorPembrolizumabassociated to Trastuzumab (2019) Int. J. Cardiol, 292, pp. 171-179; Quagliariello, V., Vecchione, R., Coppola, C., Di Cicco, C., De Capua, A., Piscopo, G., Paciello, R., Taglialatela-Scafati, O., Cardioprotective Effects of Nanoemulsions Loaded with Anti-Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity (2018) Nutrients, 10, p. 1304; Passariello, M., D'Alise, A.M., Esposito, A., Vetrei, C., Froechlich, G., Scarselli, E., Nicosia, A., De Lorenzo, C., Novel Human Anti-PD-L1 mAbs Inhibit Immune-Independent Tumor Cell Growth and PD-L1 Associated Intracellular Signalling (2019) Sci. Rep, 9, p. 13125; Theodoro, T.R., Matos, L.L., Cavalheiro, R.P., Justo, G.Z., Nader, H.B., Pinhal, M.A.S., Crosstalk between tumor cells and lymphocytes modulates heparanase expression (2019) J. Transl. Med, 17, p. 103; Laurent, S., Queirolo, P., Boero, S., Salvi, S., Piccioli, P., Boccardo, S., Minghelli, S., Pietra, G., The engagement of CTLA-4 on primary melanoma cell lines induces antibodydependent cellular cytotoxicity and TNF-α production (2013) J. Transl. Med, 11, p. 108; Zhang, S.C., Hu, Z.Q., Long, J.H., Zhu, G.M., Wang, Y., Jia, Y., Zhou, J., Zeng, Z., Clinical Implications of Tumor-Infiltrating Immune Cells in Breast Cancer (2019) J. Cancer, 10, pp. 6175-6184; Stanton, S.E., Disis, M.L., Clinical significance of tumor-infiltrating lymphocytes in breast cancer (2016) J. Immunother. Cancer, 4, p. 59; Tivol, E.A., Borriello, F., Schweitzer, A.N., Lynch, W.P., Bluestone, J.A., Sharpe, A.H., Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4 (1995) Immunity, 3, pp. 541-547; Johnson, D.B., Balko, J.M., Compton, M.L., Chalkias, S., Gorham, J., Xu, Y., Hicks, M., Bloomer, T.L., Fulminant myocarditis with combination immune checkpoint blockade (2016) N. Engl. J. Med, 375, pp. 1749-1755; Andreadou, I., Efentakis, P., Balafas, E., Togliatto, G., Davos, C.H., Varela, A., Dimitriou, C.A., Lambadiari, V., Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects (2017) Front. Physiol, 8, p. 1077; Lebreton, F., Berishvili, E., Parnaud, G., Rouget, C., Bosco, D., Berney, T., Lavallard, V., NLRP3 inflammasome is expressed and regulated in human islets (2018) Cell Death Dis, 9, p. 726; Yamamoto, T., Tsutsumi, N., Tochio, H., Ohnishi, H., Kubota, K., Kato, Z., Shirakawa, M., Kondo, N., Functional assessment of the mutational effects of human IRAK4 and MyD88 genes (2014) Mol. Immunol, 58, pp. 66-76; Marchetti, C., Swartzwelter, B., Gamboni, F., Neff, C.P., Richter, K., Azam, T., Carta, S., D'Alessandro, A., OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation (2018) Proc. Natl. Acad. Sci. USA, 115, pp. E1530-E1539; Pitt, J.M., Vétizou, M., Daillère, R., Roberti, M.P., Yamazaki, T., Routy, B., Lepage, P., Zitvogel, L., Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors (2016) Immunity, 44, pp. 1255-1269; Afonso, J., Santos, L.L., Longatto-Filho, A., Baltazar, F., Competitive glucose metabolism as a target to boost bladder cancer immunotherapy (2020) Nat. Rev. Urol, 17, pp. 77-106; Toldo, S., Abbate, A., The NLRP3 inflammasome in acute myocardial infarction (2018) Nat. Rev. Cardiol, 15, pp. 203-214
PY - 2020
Y1 - 2020
N2 - Hyperglycemia, obesity and metabolic syndrome are negative prognostic factors in breast cancer patients. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, achieving unprecedented efficacy in multiple malignancies. However, ICIs are associated with immune-related adverse events involving cardiotoxicity. We aimed to study if hyperglycemia could affect ipilimumab-induced anticancer efficacy and enhance its cardiotoxicity. Human cardiomyocytes and estrogen-responsive and triple-negative breast cancer cells (MCF-7 and MDAMB- 231 cell lines) were exposed to ipilimumab under high glucose (25 mM); low glucose (5.5 mM); high glucose and co-administration of SGLT-2 inhibitor (empagliflozin); shifting from high glucose to low glucose. Study of cell viability and the expression of new putative biomarkers of cardiotoxicity and resistance to ICIs (NLRP3, MyD88, cytokines) were quantified through ELISA (Cayman Chemical) methods. Hyperglycemia during treatment with ipilimumab increased cardiotoxicity and reduced mortality of breast cancer cells in a manner that is sensitive to NLRP3. Notably, treatment with ipilimumab and empagliflozin under high glucose or shifting from high glucose to low glucose reduced significantly the magnitude of the effects, increasing responsiveness to ipilimumab and reducing cardiotoxicity. To our knowledge, this is the first evidence that hyperglycemia exacerbates ipilimumab-induced cardiotoxicity and decreases its anticancer efficacy in MCF-7 and MDA-MB-231 cells. This study sets the stage for further tests on other breast cancer cell lines and primary cardiomyocytes and for preclinical trials in mice aimed to decrease glucose through nutritional interventions or administration of gliflozines during treatment with ipilimumab. © 2020 by the authors.
AB - Hyperglycemia, obesity and metabolic syndrome are negative prognostic factors in breast cancer patients. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, achieving unprecedented efficacy in multiple malignancies. However, ICIs are associated with immune-related adverse events involving cardiotoxicity. We aimed to study if hyperglycemia could affect ipilimumab-induced anticancer efficacy and enhance its cardiotoxicity. Human cardiomyocytes and estrogen-responsive and triple-negative breast cancer cells (MCF-7 and MDAMB- 231 cell lines) were exposed to ipilimumab under high glucose (25 mM); low glucose (5.5 mM); high glucose and co-administration of SGLT-2 inhibitor (empagliflozin); shifting from high glucose to low glucose. Study of cell viability and the expression of new putative biomarkers of cardiotoxicity and resistance to ICIs (NLRP3, MyD88, cytokines) were quantified through ELISA (Cayman Chemical) methods. Hyperglycemia during treatment with ipilimumab increased cardiotoxicity and reduced mortality of breast cancer cells in a manner that is sensitive to NLRP3. Notably, treatment with ipilimumab and empagliflozin under high glucose or shifting from high glucose to low glucose reduced significantly the magnitude of the effects, increasing responsiveness to ipilimumab and reducing cardiotoxicity. To our knowledge, this is the first evidence that hyperglycemia exacerbates ipilimumab-induced cardiotoxicity and decreases its anticancer efficacy in MCF-7 and MDA-MB-231 cells. This study sets the stage for further tests on other breast cancer cell lines and primary cardiomyocytes and for preclinical trials in mice aimed to decrease glucose through nutritional interventions or administration of gliflozines during treatment with ipilimumab. © 2020 by the authors.
KW - Breast cancer
KW - Cardioncology
KW - Cardiotoxicity
KW - Cytokines
KW - Hyperglycemia
KW - Nivolumab
KW - cryopyrin
KW - cytotoxic T lymphocyte antigen 4
KW - dapansutrile
KW - empagliflozin
KW - glucose
KW - interleukin 1beta
KW - interleukin 6
KW - ipilimumab
KW - myeloid differentiation factor 88
KW - platelet derived growth factor
KW - reactive oxygen metabolite
KW - vasculotropin
KW - animal cell
KW - animal experiment
KW - animal model
KW - antineoplastic activity
KW - Article
KW - breast cancer cell line
KW - cancer mortality
KW - cancer resistance
KW - cardiac muscle cell
KW - cardiotoxicity
KW - cell viability
KW - controlled study
KW - enzyme linked immunosorbent assay
KW - female
KW - fluorescence activated cell sorting
KW - human
KW - human cell
KW - hyperglycemia
KW - lipid peroxidation
KW - MCF-7 cell line
KW - MDA-MB-231 cell line
KW - mouse
KW - nonhuman
KW - protein expression
KW - triple negative breast cancer
U2 - 10.3390/ijms21207802
DO - 10.3390/ijms21207802
M3 - Article
VL - 21
SP - 1
EP - 22
JO - Int. J. Mol. Sci.
JF - Int. J. Mol. Sci.
SN - 1661-6596
IS - 20
ER -