Novel pathways involved in cisplatin resistance identified by a proteomics approach in non-small-cell lung cancer cells

Maria Rita Milone, Rita Lombardi, Maria Serena Roca, Francesca Bruzzese, Laura Addi, Biagio Pucci, Alfredo Budillon

Research output: Contribution to journalArticle

Abstract

Although platinum-based chemotherapy remains the standard-of-care for most patients with advanced non-small-cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP-resistant (CPr-A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr-A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum-resistance.

Original languageEnglish
Pages (from-to)9077-9092
Number of pages16
JournalJournal of Cellular Physiology
Volume234
Issue number6
DOIs
Publication statusPublished - Jun 2019

    Fingerprint

Cite this