Obesity is associated with impaired responsiveness to once-daily low-dose aspirin and in vivo platelet activation

Giovanna Petrucci, Francesco Zaccardi, Alberto Giaretta, Viviana Cavalca, Esmeralda Capristo, Carmine Cardillo, Dario Pitocco, Benedetta Porro, Francesca Schinzari, Gianna Toffolo, Elena Tremoli, Bianca Rocca

Research output: Contribution to journalArticle

Abstract

Background: The prevalence and degree of obesity is rising worldwide, increases cardiovascular risk, modifies body composition and organ function, and potentially affects the pharmacokinetics and/or pharmacodynamics of drugs. Objectives: To investigate the pharmacodynamics of once-daily low-dose aspirin in healthy obese subjects, and to assess whether body weight (BW) and body mass index (BMI) affect the pharmacology of aspirin. Patients/Methods: Otherwise healthy, obese (BMI > 30 kg/m2) subjects were studied before and after 3-4 weeks of 100-mg once-daily aspirin intake. Aspirin pharmacodynamics were assessed according to serum thromboxane (TX) B2 levels measured at 4 hours, 24 hours (i.e., posologic interval) and 48 hours after the last witnessed intake; age-matched and sex-matched non-obese controls were included. A previously calibrated pharmacokinetic/pharmacodynamic in silico model of aspirin was used to fit serum TXB2 data from obese subjects. At baseline, the major urinary TXA2 and prostacyclin metabolites, urinary isoprostane and plasma inflammatory biomarkers were measured. Results: In 16 obese subjects (aged 47 ± 11 years; BMI of 39.4 ± 5.1 kg/m2), residual serum TXB2 values between 4 and 48 hours after aspirin intake were increased 3- to 5-fold as compared with controls. At 24 hours, the residual serum TXB2 level was log-linearly associated with body size over a wide range of BMI and BW values, without any apparent threshold. The in silico model predicted that reduced aspirin bioavailability would be inversely related to body size and rescued by 200 mg of aspirin once daily or 85 mg twice daily. Baseline urinary TXA2 metabolite, isoprostane and plasma C-reactive protein levels were significantly increased in obese subjects. Conclusions: Obesity is associated with impaired aspirin responsiveness, largely because of body size. Impaired inhibition of platelet activation by conventional low-dose aspirin may affect antithrombotic efficacy.

Original languageEnglish
Pages (from-to)885-895
Number of pages11
JournalJournal of Thrombosis and Haemostasis
Volume17
Issue number6
DOIs
Publication statusPublished - Jun 2019

Keywords

  • aspirin
  • body mass index
  • obesity
  • platelets
  • thromboxane A

ASJC Scopus subject areas

  • Hematology

Fingerprint Dive into the research topics of 'Obesity is associated with impaired responsiveness to once-daily low-dose aspirin and in vivo platelet activation'. Together they form a unique fingerprint.

  • Cite this